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Abstract

In recent years, political scientists have increasingly used conjoint survey experiments to an-
alyze preferences about objects that vary in multiple attributes. The dominant approach in
these studies has been to apply the regression-based estimator for the average marginal com-
ponent effect (AMCE) proposed by Hainmueller, Hopkins, and Yamamoto (2014). Although
the standard approach enables model-free inference about preferences underlying conjoint sur-
vey data, it has important limitations for analyzing heterogeneity in respondents’ preferences
about attributes and investigating how attributes are related to each other in the formation
of preference about profiles as a whole. In this paper, we propose an item response theory
(IRT) model for conjoint survey data to analyze respondents’ heterogeneous preferences about
attributes. Our proposed approach builds upon a canonical spatial theory of voting to model
preferences as a function of respondents’ ideal points on a latent space capturing taste vari-
ation. The model also incorporates a set of valence parameters to identify the dimension
of preference about attributes that is common to all respondents. We discuss identification
conditions, inference via a Bayesian algorithm, and how to map model parameters to substan-
tive quantities of interest. We illustrate the utility of the proposed approach through Monte
Carlo simulations as well as a validation analysis of an original online conjoint experiment on
presidential candidate choice.
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1 Introduction

In recent years, political scientists have increasingly used conjoint survey experiments to analyze

preferences about objects that vary in multiple attributes. The dominant approach in these stud-

ies has been to apply the regression-based estimator for the average marginal component effect

(AMCE) proposed by Hainmueller, Hopkins, and Yamamoto (2014). This approach has the great

advantage of permitting nonparametric (model-free) inferences regarding attributes’ effects on sub-

jects’ choices under quite weak assumptions. A limitation, however, is that these inferences do not

speak directly to the structure of the preferences that underlie subjects’ choices, nor to variation

in subjects’ preferences or in attributes’ relationship to (latent) preference structure.

Making the inferential leap from observed choices to unobserved preferences requires a model

that represents the structure of those preferences and links them to the data. In this paper,

we propose a framework for this task, which builds on the canonical spatial theory of choice.

In this framework, a subject’s choice between conjoint vignettes is determined by locations of

the alternatives and of the subject in a latent Euclidean space, which captures “taste” variation

across subjects, as well as of “valence” differences between the vignettes, which are common to all

subjects. Spatial and valence differences between vignettes are in turn assumed to be a function

of the attributes included in the vignette.

We operationalize this spatial model with a Bayesian item response theory (IRT) model tailored

to conjoint data, which we estimate using Hamiltonian Monte Carlo in Stan (Stan Development

Team 2017). The conjoint IRT model estimates subjects’ ideal points in the latent space as well

as attributes’ mapping onto that space. From these parameters, we can calculate not only the

AMCE, which represents the average effect of an attribute across subjects, but also quantities such

as the conditional average marginal component effect (CAMCE), which characterizes heterogeneity

in attributes’ effects as a function of subjects’ ideal points. The package conjointIRT (Caughey,

Katsumata, and Yamamoto 2019) implements the conjoint IRT model in R.

We validate this model with simulations and an original conjoint experiment. The simulations

confirm that the model accurately estimates true parameter values under conditions typical of most

conjoint studies (e.g., 200 subjects, 10 tasks per subject). The original experiment, an analysis

of presidential candidate choice, provides further validation of our approach and also illustrates

its usefulness. First, the model successfully identifies a latent ideological dimension that coincides
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with our substantive understanding of American politics. Specifically, it correctly estimates the

effects of all of our six policy attributes to be highly heterogeneous along the dimension, while

showing the other six valence attributes to have substantially less or no discernible variation. At

the same time, the model uncovers subtle but significant variation in effects for two of these valence

attributes—gender and past military experience—that matches our substantive understanding. Fi-

nally, we show that the model-based point estimates of the overall AMCEs given our IRT model

almost exactly coincide with the nonparametric AMCE estimates with less statistical uncertainty.

This implies that our simple model captures the underlying true structure of respondents’ prefer-

ences very well without introducing bias in the estimation of nonparametrically identified causal

quantities. Our approach reveals the richness of empirical information contained in conjoint survey

data that is not fully exploited by the existing approaches.

2 Motivation

In many settings, especially economic ones, it is reasonable to treat decision makers’ preferences as

nonsatiable in the sense that for a given person, more (or less) of a given attribute or commodity

is always better. In addition, it is frequently plausible to assume a substantial degree of consensus

over whether more or less is better. Thus, for example, more money is generally preferred to less,

lower prices to higher ones, greater durability to less, better health to worse, and so on. Political

preferences differ from economic ones in two respects. First, it is frequently more plausible to

regard preferences over political outcomes as satiable rather than nonsatiable (Brady 1990, 97–8;

McCarty and Meirowitz 2007, 21–2). That is, there is an ideal amount of a given attribute, often

represented as a point in Euclidean space, that a person prefers to either more or less of that

attribute. Second, people often disagree over which outcome is best. A conservative, for example,

might ideally prefer a $5 minimum wage, a $10,000 cap on employment discrimination damages, a

legal limit of 100,000 immigrants per year, and a prohibition on abortions except to save the life

of the mother, whereas a liberal might have very different policy preferences. In short, political

preferences are both more likely to be satiable than economic preferences and more likely to conflict

between different types of people.

Existing methods of conjoint analysis are not ideally suited to studying satiable, conflicting

preferences. Although political conjoint experiments often focus on how subjects resolve trade-
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offs across attributes, reactions to any given attribute are typically summarized with a single

effect estimate, such as the AMCE. Nonparametric estimation of the AMCE has the advantage

of providing model-free inference even in the face of individual-level heterogeneity. To the extent

that individual heterogeneity is substantial, however, the AMCE’s focus on average effects glosses

over potentially interesting variation. In particular, if subjects have very different ideal points,

then an attribute might have large but opposite individual-level effects that cancel to produce a

negligible AMCE. Moreover, when individual-level effects are highly heterogenous, the AMCE in

an unrepresentative sample may differ substantially in magnitude or even in sign from the average

effect in the population of interest.

The main existing approach to subject-level effect variation in conjoint experiments is to exam-

ine how observed subject characteristics moderate the effect of a given attribute. Hainmueller and

Hopkins (2015), for example, examine variation in the effects of immigrant attributes by subject

race, ethnocentrism, partisan identification, and other factors. This approach, however, has several

limitations. First, subjects’ observed characteristics may not be strong predictors of variation in

treatment effects. This is particularly problematic if characteristics are analyzed one by one, which

may result in the dangerous combination of multiple comparisons and low statistical power (see,

e.g., Gelman, Hill, and Yajima 2012, 194–5). Second, one downside of being fully nonparameteric

is the lack of a connection to a generative theoretical model, such as the spatial framework often

used to represent satiable preferences. Even if just an approximation, a theoretical model can aid

interpretation of the estimates by uncovering common variation across subjects and revealing how

different attributes relate to that underlying dimension.

For these reasons, we propose an alternative approach to analyzing conjoint experiments, one

that explicitly models heterogeneous preferences in terms of variation in subjects’ spatial ideal

points. Using an IRT model derived from a spatial model of choice, our proposed approach jointly

estimates subjects’ ideal points and attributes’ item parameters. These parameters provide an

intuitive, low-dimensional characterization of variation in subjects’ preferences and in attributes’

mapping to the latent dimension(s) of variation.
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3 The Proposed Methodology (multi-dimensional version)

We now present our proposed methodology for analyzing survey respondents’ preferences expressed

via conjoint tasks. Throughout this section, we assume a paired forced-choice conjoint design,

in which respondents are presented pairs of conjoint profiles and required to choose the more

preferred profile within each pairwise comparison. This design has been very commonly used in

political science and shown to perform well when benchmarked against revealed preference data

(Hainmueller, Hangartner, and Yamamoto 2015). Extending the proposed framework to other

common conjoint designs should be straightforward and is left for future work.

3.1 The Model

We consider a conjoint experiment in which respondent i ∈ {1, . . . , N} completes K choice tasks.

In each task k ∈ {1, . . . , K}, the respondent is presented with a choice between two profiles.

Each profile j ∈ {1, 2} is characterized by a collection of L categorical attributes. For the sake

of simplicity, we assume that the attributes are all binary, such that each of the P ≡ 2L unique

profiles can be represented by a set of L binary indicators or dummies. Let xp ≡ [1, x1, . . . , xL]>

be a (column) vector of L such dummies, plus an intercept term, where xl ∈ {0, 1} for any

l ∈ {1, . . . , L}. We use the subscript p ∈ {1, . . . , P} to index each unique set of attributes, so that

x1 = [1, 0, . . . , 0]>, x2 = [1, 0, . . . , 1]>, etc., for example.

Our general approach is to model the choice between two profiles as a function of the relative

appeal of the attribute vectors xp and xp′ that characterize the two profiles. That is, using a

random utility framework, we assume the following model of respondent i’s potential utility from

profile j in task k if the pth set of attributes were assigned to that profile:

Uikj(xp) = −‖θi − ζ(xp)‖2 + ν(xp) + εikj, (1)

where θi is respondent i’s ideal point in a D-dimensional latent space, representing taste variation,

ζ(xp) is the location of profile p in the same taste space, ν(xp) is the valence of profile p, representing

the desirability of xp for all respondents, εikj is a stochastic component of utility, and ‖ · ‖ is

the Euclidean norm. This utility function thus contains two systematic components. The first,

−‖θi− ζ(xp)‖2, is what we call the spatial, taste, or location component, which we assume to take
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on the form of a standard quadratic loss function. That is, the model posits that respondents

evaluate how desirable a profile is based on the Euclidean distance between the position of the

profile and her own position in the same latent space. She will dislike the position if the profile

is located far away from the position, and vice versa. Second, the model also contains a valence

component, ν(xp), which represents the desirability of profile p for all respondents. This component

is assumed to not vary across respondents, implying that it captures the portion of utility that

does not depend on the underlying taste dimension in our model.

Next, we specify the functional forms for the valance and location parameters in terms of the

attributes. Here, we model each of these as a linear function of xp:

ν(xp) = x>p α (2)

ζ(xp) = x>p β, (3)

where α is a (L+1)-vector of coefficients indicating the valence of the attributes, β is a (L+1)×D

matrix of coefficients indicating how much each attribute shifts the D-dimensional spatial location

of a profile in a certain direction. Note that the linear specification here amounts to assuming

that there is no interaction between the attributes; this assumption can be easily relaxed by

additionally including interaction terms. A larger value of αl means that attribute l is more

preferable to respondents regardless of their ideal points. Valence attributes, such as honesty and

integrity of political candidates for example, should have large α. On the other hand, βl,d represents

how heterogeneous respondents’ preferences are with respect to attribute l in dimension d. This

parameter is larger when the preference for the attribute differs greatly depending on respondents’

ideal points. In other words, β indicates the extent of disagreement among respondents over the

preferable levels of the attribute.

Now we map our behavioral model of conjoint preferences to the observed data arising from an

actual conjoint experiment. As the jth profile for respondent i in kth task, we obtain a random

draw of a combination of attributes, which represents one of the P possible profiles. We denote

such a random vector of realized attributes by Xikj ≡ [1, Xikj1, . . . , XikjL]> ∈ {x1, . . . ,xP}. Then,

we follow the standard random utility framework for discrete choice (e.g., McFadden et al. 1973)

to model respondent i’s choice to be the profile that gives her the highest utility. Specifically, let

εik ≡ εik2 − εik1 be distributed as εik
i.i.d.∼ N (0, σ2). Then, we can model respondent i’s observed
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choice response in the kth task, denoted by Yik ∈ {1, 2}, as follows:

Pr[Yik = 1 | Xik1,Xik2] (4)

= Pr[Uik1(Xik1) > Uik2(Xik2)] (5)

= Pr[−‖θi − ζ(Xik1)‖2 + ν(Xik1) + εik1 > (−‖θi − ζ(Xik2)‖2 + ν(Xik2)) + εik2] (6)

= Pr[−‖θi − ζ(Xik1)‖2 + ν(Xik1)− (−‖θi − ζ(Xik2)‖2 + ν(Xik2)) > −εik1 + εik2] (7)

= Pr[2(ζ(Xik1)− ζ(Xik2))
>
θi

− (ζ(Xik1)
>
ζ(Xik1)− ζ(Xik2)

>
ζ(Xik2)− (ν(Xik1)− ν(Xik2))) > εik]. (8)

If we let

b(Xik1,Xik2) = 2(ζ(Xik1)− ζ(Xik2))/σ

denote the “discrimination” of i’s kth profile contrast and

g(Xik1,Xik2) = (ζ(Xik1)
>
ζ(Xik1)− ζ(Xik2)

>
ζ(Xik2)− (ν(Xik1)− ν(Xik2)))/σ

its “difficulty,” then the model takes on the same form as the two-parameter probit IRT model,

Pr[Yik = 1 | Xik1,Xik2] = Φ[b(Xik1,Xik2)
>
θi − g(Xik1,Xik2)], (9)

where Φ(·) represents the standard normal cumulative distribution function.

Given the assumed linear specifications for the location and valence parameters, the discrimi-

nation and difficulty parameters can be written directly in terms of the model coefficients,

b(Xik1,Xik2) = 2(Xik1 −Xik2)
>β/σ (10)

g(Xik1,Xik2) = (Xik1 −Xik2)
>(ββ

>
(Xik1 + Xik2)− α)/σ. (11)

Note that the difficulty parameter g(Xik1,Xik2) depends on both the attribute valence coefficients

α and the spatial coefficients β, whereas the discrimination parameter b(Xik1,Xik2) depends on β

only. This means that the discrimination parameter determines a part of utility that is related to

ideal points and the difficulty parameter is related to both ideal points and valence. The likelihood
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of the model is

L(β, α, θ, σ | Y,X)

=
N∏
i=1

K∏
k=1

Φ
(
b(Xik1,Xik2)

>θi − g(Xik1,Xik2)
)2−Yik

×
{

1− Φ
(
b(Xik1,Xik2)

>θi − g(Xik1,Xik2)
)}Yik−1

=
N∏
i=1

K∏
k=1

Φ

(
2(Xik1 −Xik2)

>βθi − (Xik1 −Xik2)
>(ββ>(Xik1 + Xik2)

> − α)

σ

)2−Yik

×
{

1− Φ

(
2(Xik1 −Xik2)

>βθi − (Xik1 −Xik2)
>(ββ>(Xik1 + Xik2)

> − α)

σ

)}Yik−1

,(12)

where θ = [θ1, . . . , θN ]> and Y and X respectively collect the observed responses and realized

attributes of the NK task observations.

From an IRT perspective, conjoint survey data can be regarded as analogous to a particular

kind of roll-call voting data, where each “legislator” (respondent) votes on a random subset of pairs

of “bill proposals” (profiles) formed out of the P total proposals. That is, a paired forced-choice

conjoint task can be interpreted as a respondent’s vote for a particular bill against another. This

view highlights an important challenge when fitting an IRT model to conjoint survey data. That

is, unlike typical legislative roll-call data, researchers can only observe each respondent’s conjoint

vote choices for a small fraction of the bills that exist in the data. For example, consider a paired

conjoint experiment with 10 binary attributes, each respondent completing 20 forced-choice tasks.

In this scenario, the researcher can only observe less than 0.004% of the universe of possible pairwise

profile comparisons per respondent (ignoring unlikely but possible duplicates), because the number

of possible profile pairs is
(
210

2

)
= 523,776. This suggests that an IRT model fitted to conjoint data

must be sufficiently simple to maintain required statistical power for meaningful inference.

In our proposed approach, this simplification is achieved by reducing the dimensionality of the

parameter space substantially by modeling the bill parameters with (1 +D)(L+ 1) coefficients on

the attributes. While this might seem too drastic, it is important to recall that conjoint “bills” are

distinguishable from each other only based on the observed attribute values by design. That is,

unlike observational legislative roll-calls where each bill can always be unique in ways not captured

by observed variables in a dataset, conjoint profiles are virtually guaranteed to be conditionally

exchangeable because of their experimental nature. Moreover, by virtue of the randomization of the
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attributes, the set of profiles presented to each respondent is guaranteed to be an i.i.d. draw from

the population of the possible profile sets: missingness is completely at random by design. This

contrasts sharply with typical legislative roll-call data, in which abstentions are highly unlikely to

occur at random. These advantages of conjoint data are likely to make our inference fairly robust

to model misspecifications, even with a very concise model such as ours and with an extremely

sparse observed data matrix by an IRT standard. Indeed, as we show in Section 5.5, we find our

model-based AMCE estimates for our empirical example to be remarkably close to nonparametric

estimates of AMCEs which do not rely on any modeling assumption.

3.2 Identification

As is typical of spatial voting and other latent-variable models, identification of our conjoint IRT

model requires a number of parameter restrictions. We enumerate these explicitly because few

published sources collect them in one place. We largely follow Rivers’s (2003) oft-cited unpublished

paper on the subject, but depart from it in a few places, notably in our approach to rotational

invariance. It should be emphasized that although these restrictions are theoretically sufficient for

identification, in practice effective sampling may require redundant additional constraints on the

signs of the spatial coefficients (Restriction 5 below).

“Local” identification of the conjoint IRT model can be achieved by imposing D(D + 1) inde-

pendent restrictions on the parameters (Rivers 2003, 2). The first D restrictions we impose are

setting the mean of respondent ideal points to 0 in each dimension:

Restriction 1 (Zero-Mean Ideal Points).
∑N

i θid = 0, for all d.

The next D restrictions consist of setting the variance of the ideal points to 1:

Restriction 2 (Unit-Variance Ideal Points).
∑N

i θ
2
id = N, for all d.

For multidimensional models (D > 1), we impose a further D(D− 1) restrictions. D(D− 1)/2

of these consist of requiring ideal points to be uncorrelated across dimensions:

Restriction 3 (Orthogonal Dimensions).
∑N

i θidθid′ = 0, for all d, d′ : d 6= d′.1

1. We implement Restriction 3 (along with Restriction 2) by multiplying the column-demeaned ideal-point matrix
(θ̊) by the Cholesky decomposition of the precision matrix of the ideal points (L = chol(cov(θ̊)−1)). The columns
of the “whitened” ideal-point matrix θ̃ = θ̊L> have, in addition to means of 0, variances of 1 and covariances of 0
(Kessy, Lewin, and Strimmer 2018).
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The other D(D−1)/2 restrictions, required for rotational invariance, consist of setting a subset

of spatial coefficients to 0 (Quinn 2004, 340):

Restriction 4 (Rotational Invariance). βld = 0, for some D(D − 1)/2 combinations of l and d.2

As noted, the D(D + 1) restrictions in Restrictions 1–4 are sufficient for local identification

of the model. To achieve “global” identification, however, we must impose an additional D sign

restrictions on β, which fixes the polarity of the latent dimension(s):

Restriction 5 (Polarity). βld > 0 or βld < 0, for some l in each d.

Finally, we impose the standard normalizing assumption that the differences in utility shocks,

εik2 − εik1 = εik, have unit variance:

Restriction 6 (Unit-Variance Utility Shocks). σ = 1.

Even with these restrictions, some of the model’s parameters remain unidentified. In particular,

the attribute valence parameters αl are not identified separately from the intercept of the spatial

component β0. We can, however, identify γl = αl − 2β>0 βl, ∀l ∈ {1, 2, . . . , L}.3 This motivates the

following reparameterization of the likelihood function:

L(β, α, θ, σ | Y,X) = L(β̃, γ, θ, σ | Y,X)

=
N∏
i=1

K∏
k=1

Φ
(

2(X̃ik1 − X̃ik2)
>β̃θi − (X̃ik1 − X̃ik2)

>(β̃β̃>(X̃ik1 + X̃ik2)
> − γ)

)2−Yik

×
{

1− Φ
(

2(X̃ik1 − X̃ik2)
>β̃θi − (X̃ik1 − X̃ik2)

>(β̃β̃>(X̃ik1 + X̃ik2)
> − γ)

)}Yik−1
,(13)

where σ = 1 is suppressed and X>ikj = [1, X̃>ikj]
>, β = [β0, β̃

>]>, and γ = [γ1, . . . , γl, . . . , γL]>. Note

that the spatial intercept β0 does not appear in equation (13) and therefore is not identified.

Because γ depends on β as well as α, it does not directly measure attributes’ valence. Neverthe-

less, interpretation of it is aided by the fact that its second term (2β>0 βl) drops out if all elements

of either β0 or βl equal zero. Thus, if the spatial component of attribute l is small (βl ≈ 0D), γl

2. As Aguilar and West (2000, 340) note, an advantage of this approach to rotational invariance is that it helps
imbue the latent dimensions with substantive meaning. For example, in a two-dimensional model, theD(D−1)/2 = 1
attribute l for which βl2 = 0 is equal to the first factor plus noise. For this reason, it may be advisable to select for
restriction attributes whose spatial component is both strong and substantively interpretable.

3. The valence intercept, α0, is entirely unidentifiable because it is differenced out of the likelihood in (12) when
α is pre-multiplied by (Xik1 −Xik2)

>.
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approximates l’s valence coefficient αl. As we will see, several of the attributes in the empirical

application in Section 5 satisfy this condition. Even if βl is large, γl may still approximate αl if

β0 ≈ 0D. Note that β0, being the intercept, corresponds to the location of the respondent whose

ideal profile is x0 ≡ [0, . . . , 0]> in the latent space. Thus, one practical possibility researchers

might consider for interpretability is to set x0 to be a profile plausibly located at the center of the

latent space (e.g., an ideologically moderate candidate). If successful, this will ensure that γ will

approximate α even for attributes with a strong spatial component.

3.3 Inference

To estimate the model just described, we adopt a Bayesian framework and use the probabilistic

programming language Stan, as implemented by the R package rstan (Carpenter et al. 2017; Stan

Development Team 2017). Stan samples from the posterior of Bayesian models using Hamiltonian

Monte Carlo (HMC) simulation, which for complex posteriors is often more efficient and robust

than alternative techniques such as Gibbs sampling. We implement this approach in the R package

conjointIRT.

We parameterize the model as it appears in (13), that is, in terms of the identifiable parameters

β̃ and γ rather than β and α. To complete the Bayesian specification, we assign independent

N(0, 1) priors to the elements of the raw (i.e., pre-transformed) θ and β matrices as well as to the

elements of γ.4 The identification constraints described in section 3.2 are implemented in the Stan

code itself, so they occur within each iteration rather than in post-processing. For full Stan code,

see Appendix A.1.

3.4 Causal Quantity of Interest

Although our model parameters are themselves interpretable in the context of the proposed spatial

choice model, one might desire to translate these parameters to a quantity that can be interpreted

as causal effects. In particular, one might ask: What is the average causal effect of an attribute on

the choice probability for a profile, conditional on the location of a respondent’s ideal point?

4. Note because the location and scale of the latent dimension is fixed by the identification restrictions on θ, the
mean and variance of these priors could be any pair of arbitrary constants instead of 0 and 1 and still yield the
same posterior distributions.
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We propose the conditional average marginal component effect (CAMCE) as a quantity of inter-

est that can be estimated with our methodology. Let Yikj(xj,xj′) = Yikj(x1j, . . . , xLj, x1j′ , . . . , xLj′) ∈

{0, 1} denote the binary potential outcome indicating whether respondent i would choose the jth

profile in the kth task if the task was a comparison of the profile xj against the other profile

within the pair xj′ , where i ∈ {1, . . . , N}, j 6= j′ ∈ {1, 2} and k ∈ {1, . . . , K}. (We suppress

the intercept term in x to simplify the notation.) Note that Yik1(x1,x2) = 1 − Yik2(x2,x1) by

design. We make the consistency assumption such that the observed outcome can be written as

Yik = 2−Yik1(Xik1,Xik2) = 1 +Yik2(Xik2,Xik1). Using this notation, we define the CAMCE of the

first attribute given ideal point θi = θ∗ as follows.

CAMCE1(θ
∗) = E[Yikj(1, Xikj2, . . . , XikjL,Xikj′)−Yikj(0, Xikj2, . . . , XikjL,Xikj′) | θi = θ∗], (14)

where the expectation operator is defined with respect to both the joint distribution of the attributes

other than the attribute of interest, i.e., Xikj2, . . . , XikjL and Xikj′ ,5 and the random sampling of

the NK respondent-tasks from the population. The CAMCEs for the rest of the attributes in the

design, CAMCE2(θ
∗), . . . , CAMCEL(θ∗), are defined analogously.

Equation (14) is closely related to the AMCE as defined by Hainmueller, Hopkins, and Ya-

mamoto (2014), which in our notation is given by,

AMCE1 = E[Yikj(1, Xikj2, . . . , XikjL,Xikj′)− Yikj(0, Xikj2, . . . , XikjL,Xikj′)],

for the first attribute. That is, the CAMCE represents how the average marginal effect of an

attribute on the probability of choosing a profile varies as a function of the respondent’s ideal point.

Hainmueller, Hopkins, and Yamamoto (2014, equation (7)) propose a similar conditional AMCE

where the conditioning variable is an observed pre-treatment respondent characteristic. Their

approach is likely to be preferable if the researcher is specifically interested in the heterogeneity of

attribute effects with respect to a concrete respondent characteristic measured in their study (e.g.

5. This distribution, often referred to as the randomization distribution, can in theory be any distribution specified
by the researcher, although the predominant practice is to use the distribution used in the random generation of
the profiles in the actual experiment. Care must be taken when the actual randomization distribution includes
restrictions that prohibit certain combinations of attributes. For details, see Hainmueller, Hopkins, and Yamamoto
(2014). Incorporating such a non-standard randomization distribution in the current Bayesian framework is beyond
the scope of this paper; in our empirical example, we define our CAMCEs in terms of the actual randomization used
in the experiment, which contained no restriction.
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ethnocentrism in Hainmueller, Hopkins, and Yamamoto’s immigration example). Here, we consider

an alternative scenario where a researcher is interested in the effect heterogeneity with respect to

a latent characteristic of respondents (i.e. ideal points) that best explains the inter-respondent

variation in the choice responses under the assumed model.

4 Simulations

To evaluate the finite sample performance of this model, we conducted a set of Monte Carlo

simulations with varying numbers of respondents (N) and tasks (K). Our main goal is to provide

numerical evidence that our (Bayesian) point estimates of the attribute parameters (β and γ) and

respondent ideal points (θ) have desirable asymptotic properties with respect to N and K. We

are also interested in determining the minimum values of N and K required for tolerably accurate

parameter estimates. In brief, we find that for all parameters the accuracy of the estimates increases

with the number of tasks K, and that for the attribute parameters accuracy increases with the

number of respondents N as well. Reasonable estimates can be obtained at levels of N and K

typical of conjoint studies in political science.

The simulations were designed as follows. L = 8 attributes were assigned the parameter values

α̃ = [0.5, 0,−0.5, 0.5, 0, 0,−0.5, 0.5]> where α = [α0, α̃
>]>, β̃ = [−0.6,−0.3,−0.2, 0, 0, 0.2, 0.3, 0.6]>,

and β0 = 0.2, which together imply γ = [0.7, 0.1,−0.4, 0.5, 0.0,−0.1,−0.6, 0.3]>. Respondent ideal

points (θ) were generated from a mixture of three normal distributions corresponding to three

ideological groups (e.g., Liberals, Moderates, and Conservatives) with equal sizes. The group

distributions were respectively centered at −2, 0, and +2, all with standard deviation 1. For com-

parability, we rescaled the θ distibution in each simulation to have mean 0 and standard deviation

1. Using these parameter values, we generated hypothetical survey response data in accordance

with the random utility model described in Section 3. Specifically, we randomly drew samples from
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the following data generating process:

Xikjl
i.i.d.∼ Bernoulli(0.5),

εik
i.i.d.∼ N (0, 1),

ν(Xikj) = X>ikjα,

ζ(Xikj) = X>ikjβ,

Yik =

1 if − (θi − ζ(Xik1))
2 + ν(Xik1)− (−(θi − ζ(Xik2))

2 + ν(Xik2)) > εik,

2 otherwise.
(15)

For each of the 9 combinations of N = {100, 200, 400} respondents and K = {5, 10, 20} tasks,

we conducted 1,000 simulations with respondents’ ideal points fixed. For each set of simulations,

we estimated the bias and root mean squared error (RMSE) of the posterior means of β and γ.

We did the same for the ideal points of the respondents at the 10th, 25th, 50th, 75th, and 90th

percentiles of the θ distribution. To evaluate our uncertainty estimates, we also calculated the

proportion of simulations in which each parameter’s 90% credible interval (CI) did not cover the

true parameter value (its noncoverage rate).

The asymptotic properties of our estimators are well illustrated by Figure 1, which presents

RMSE as a function of the number of subjects (x-axis) and tasks (columns). For all three sets

of parameters, RMSE decreases monotonically as the number of tasks K increases. In addition,

the RMSE of the attribute parameters (but not θ) is also decreasing in the number of subjects

N . Within each parameter set, RMSE tends to be larger for relatively extreme values, and it is

proportionally larger for θ than for γ and β. The bias of these estimators exhibits similar patterns,

indicating that the RMSE results are not simply due to decreasing variance (see Figure A.1 in

Appendix A.2). The only difference from RMSE is that the bias of γ estimates decreases in K

but not N . For β, bias is positively correlated with the parameter value (i.e., positive values have

positive bias), but for θ the correlation is negative (i.e., positive values have negative bias).

The coverage properties of the parameters’ 90% CIs were insensitive to both K and N , but

they differed systematically across parameter sets (see Figure A.2 in Appendix A.2). The CIs for

θ tended to be conservative—that is, they failed to cover the true parameter value less frequently

than their nominal level of 10%. In contrast, the CIs for β were anti-conservative, exhibiting
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Figure 1: Results of the Monte Carlo Experiment in Terms of RMSE. The graphs show the sim-
ulated root mean squared error of posterior mean for β (top), γ (middle), and θ (bottom) for
different combinations of N and K.
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noncoverage rates as high as 25% for extreme values (e.g., β = 0.6). Finally, the noncoverage rates

for γ clustered around their nominal level. Although we should not necessarily expect Bayesian

CIs to perform optimally according to frequentist standards, these results do suggest that the CI

for large values of |β| may understate the uncertainty of the estimates.

On the whole, however, the simulation results validate our estimation approach. Although

the estimates improve with larger N and especially K, they are quite accurate with even modest

numbers of subjects and tasks (e.g., N = 200, K = 10). In fact, if the primary targets of inference

are the attribute parameters rather than the ideal points, as few as 5 tasks per respondent may be

sufficient. Since most conjoint experiments in political science have values of N and K as least as

large as these thresholds, the simulations suggest that applying our method does not require major

changes in how conjoint surveys are designed, and that the method can be applied retrospectively

to surveys that have already been conducted.

5 Application: U.S. Presidential Candidates

We now present results from our original conjoint experiment conducted online via Amazon’s

Mechanical Turk platform. We designed the survey experiment so that it would serve as a validation

dataset for our proposed methodology. Namely, we picked a substantive setting—choice between

presidential candidates in the United States—for which we had a clear expectation about the latent

structure of respondents’ preferences on the basis of existing empirical evidence. The goal of our

study, thus, is to investigate whether our proposed approach will return results that match our

prior expectations based on substantive understanding of the context.

5.1 Data

For our survey experiment, we recruited a total of 1,003 respondents on Mechanical Turk, with the

compensation of $1.50 for the expected completion time of 15 to 20 minutes. The respondents were

residents of the United States who were 18 years old or older. The survey started with a battery

of questions about respondents’ socio-demographic characteristics, including gender, race, year of

birth, state of residence, education, income, marital status, political ideology, and six-point party

identification (omitting pure independent as an option). We then asked respondents about their
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preferences for hypothetical candidates for President of the United States in a standard pairwise

conjoint format with forced choice. Specifically, we told them: “This study is about voting and

your views on potential candidates for President. We are going to present 30 pairs of hypothetical

presidential candidates in the United States. For each pair, please indicate which of the two

candidates you would prefer to see as President. Please make a choice even if you are not sure.”6

Our candidate profiles consisted of 12 attributes, each randomly taking on one of the two pos-

sible levels.7 Of those 12 attributes, six were designed to represent candidates’ positions on policy

issues (health care, abortion, gun control, immigration, same-sex marriage and tax), whereas the

other six non-policy characteristics of the candidates (gender, education, profession, age, military

service experience, and whether they have been investigated for any campaign violation). The

exact wordings for these attributes and their levels are provided in Table A.3, Appendix A.3. We

coded the policy attributes such that the baseline level would correspond to the more conservative

position, so the positive values of β and θ would indicate the liberal direction.

The rationale behind our choice of these 12 attributes is threefold. First, we expect the prefer-

ences about the six policy attributes to vary across respondents along a single left-right ideological

dimension. It has been shown that policy preferences in the United States can be largely charac-

terized by a single latent dimension that closely aligns with partisanship both at the elite and mass

level, especially in recent years (Jessee 2009; Tausanovitch and Warshaw 2013; Marble and Tyler

2018). In fact, we deliberately pick policy issues that we anticipate to correlate with respondents’

latent ideology particularly closely for the purpose of this validation exercise. We thus expect

the effects of these attributes to be highly heterogenous and vary systematically as functions of

respondents’ ideal points.

Second, we expect respondents to have more or less nonsatiable preferences about four of our

six non-policy attributes. That is, we anticipate both left- and right-leaning respondents to have

largely homogenous preferences about education, profession, campaign violations, and (probably)

age. Our expectation is thus that the effects for these attributes are mostly picked up by the

6. Our choice of including as many as 30 tasks per respondent, a number that is larger than most existing conjoint
studies in political science (though not necessarily in other fields such as marketing), is motivated by the recent
empirical evidence reported by Bansak et al. (2018). They use a similar sample recruited from Mechanical Turk and
ask a similar presidential candidate choice task 30 times to examine if there is any change in the way respondents
complete those tasks. Remarkably, they find no noticeable degradation in response quality even after 30 tasks.

7. We made all of our attributes dichotomous for the sake of simplicity, although the proposed method can easily
be applied to attributes with more than two discrete levels.

16



valence component of our model, such that the estimated CAMCEs will vary little as functions of

the ideal points if at all.

Third, preferences about the two remaining non-policy attributes—gender and military service

experience—are plausibly correlated with the ideological dimension that underlies the policy pref-

erences. That is to say, we expect respondents who tend to prefer liberal policy positions to also

prefer to see female candidates as President, and conversely conservative respondents to prefer

male candidates. We also expect that respondents who tend to prefer conservative policy positions

will value previous military service experience more positively than liberal respondents.

5.2 Estimation Results for Attribute Parameters

To make inference about the parameters in our proposed model, we applied the estimation pro-

cedure described in Section 3 to data from our presidential choice conjoint experiment. After

sampling 1,000 draws from each of the four HMC chains, the sampler appeared to have achieved

convergence, with Gelman and Rubin’s potential scale reduction factor becoming very close to one

for all of the model parameters. Visual inspection of traceplots for the parameters (see Figure A.3

in Appendix A.3 for illustrative examples) also indicated strong evidence of convergence.8

Figure 5.2 presents our estimates of the β parameters (except the intercept β0, which is not

separately identified from the valence parameters). To reiterate, the spatial (or taste) parame-

ter β in our proposed model represents the “factor loadings” of the attributes on the common

latent dimension that governs the preference heterogeneity across respondents. In other words,

a large value of βl indicates that the preference about attribute l is highly heterogenous among

respondents with different ideal points. Since our validation experiment is designed to capture the

common liberal-conservative ideological dimension in the U.S. public opinion, β can be interpreted

as parameters representing how strongly respondents’ preferences about each of the attributes are

correlated with their underlying political ideology.

The estimation results not only corroborate our prior expectations but also produce additional

empirical insights that are substantively interesting. First, the six policy attributes are all estimated

to have large positive loadings on the latent scale, indicating that the model successfully captures

the common ideological dimension underlying respondents’ preferences. Interestingly, the estimates

8. The computation took several hours on a relatively modern workstation (Top-of-the-line mid-2010 Mac Pro)
with the four chains parallelized to separate CPU cores.

17



●

●

●

●

●

●

●

●

●

●

●

●

Age

Campaign.Violations

Education

Gender

Military.Service.Experience

Profession

Position.on.Abortion

Position.on.Gun.Control

Position.on.Health.Care

Position.on.Immigration

Position.on.SameSex.Marriage

Position.on.Tax

0.0 0.2 0.4

Factor Loadings on the Taste Dimension (β)

Figure 2: Estimates of the β Parameters for the Presidential Candidate Choice Experiment. The
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indicate that position on abortion is by far the strongest correlate of the ideological dimension,

followed by positions on same-sex marriage and gun control. Compared to these three policy

positions, which can be thought of as primarily representing socio-cultural components of political

ideology, the positions on the three economic and redistributive policies (immigration, health care,

and taxation on the rich) are estimated to have weaker associations with the latent dimension.

Second, compared to the policy attributes, the six non-policy attributes are estimated to have

much smaller β parameters, indicating that respondents’ preferences about these attributes do not

vary nearly as much in accordance with their ideological positions. In particular, the β values for

four of these parameters (age, campaign violations, education, and military service experience) are

estimated to be very close to zero. This implies that respondents’ ideology does not correlate with

their preferences about these four attributes.

Third, of the six non-policy attributes, gender and military service experience do appear to have

significant loadings on the ideological dimension. That is, gender is estimated to have a positive

β parameter that is not as large as the policy attributes in magnitude but still is statistically

distinguishable from zero. This implies that liberal respondents tend to prefer female candidates

more compared to conservative respondents, corroborating our prior expectation. Likewise, military

service experience is estimated to have a smaller but statistically significant β parameter that is

in the negative direction, indicating veteran status is valued more by conservative respondents

than liberal respondents. Thus, overall, our model appears to capture respondents’ taste variation

about presidential candidates remarkably successfully in terms of the canonical liberal-conservative

ideological dimension. It is also noteworthy that the parameters are highly precisely estimated even

with our moderate-sized sample of 1,003 respondents.

We now briefly discuss the other set of attribute parameters γ. As discussed in Section 3.2,

γ is difficult to interpret directly because it is a function of both the taste parameter β and the

valence parameter α. An exception, however, is when the taste parameter happens to equal zero

for an attribute, in which case γ exactly coincides with the valence parameter. Although we can

never know whether this is indeed the case for any given parameter except by assumption, it is

possible to empirically find attributes for which the condition approximately holds by examining

the estimates for β. In our presidential candidate experiment, β for four non-policy attributes

(age, campaign violations, education, and profession) are estimated to be negligibly small, which
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20



enables us to interpret γ for those attributes as representing their valence coefficients.9

Figure 5.2 presents our estimates for the γ parameters, including the four that can plausibly

be interpreted as our α estimates. The estimates indicate that all of those attributes have sizable

effects on the portion of the utility function that is common to all respondents regardless of their

ideological leanings. This implies that respondents almost invariably prefer one of the two levels

for each of these attributes (specifically, 45-year-old to 72-year-old candidates, candidates with a

college degree to candidates with a high school degree, corporate executives to car dealers, and

candidates who have never been investigated for campaign violations to those who have been),

whether respondents are liberal or conservative.

5.3 Estimated Ideal Points

We now turn to the estimates of respondents’ ideal points, represented by θ in our model. Figure 5.3

presents the empirical distribution of our point estimates of θi (posterior means). The distribution

is standardized to mean 0 and variance 1 for the purpose of model identification, as discussed in

Section 3.2. Figure A.4 in Appendix A.3 shows both posterior means and 95% central posterior

intervals for each θi, indicating reasonable precision for our estimates even for individual ideal

points.

The estimated distribution of ideal points clearly indicates the presence of at least three modes,

resembling a mixture of three gaussians. Remarkably, the modes appear to correspond closely to

conservatives, moderates, and liberals. The highest mode appears to represent ideological moder-

ates and sits slightly to the left of the mean of the distribution (at around −0.4). This indicates

that our Mechanical Turk respondent sample on average leans in the liberal direction, consistent

with the existing evidence about the ideological tendency of survey respondents recruited on Me-

chanical Turk (e.g., Berinsky, Huber, and Lenz 2012). Moreover, the liberal mode appearing at

around 0.8 is much higher than the conservative mode that sits at about −1.5, further confirming

what has previously been known about the ideology of Mechanical Turk respondents. It is also

interesting that the shape of the overall distribution is trimodal rather than uniform or unimodal:

9. Note that this approximation might be off by quite a bit even with βl ' 0 for attribute l, if β0 turns out to be
very large. It is thus important to understand what the intercept parameter β0 represents. It can be easily shown
that β0 corresponds to the ideal point of a respondent who prefers the “baseline profile” the most, i.e., the conjoint
profile consisting of the baseline levels of all attributes. In our empirical example, this corresponds to a candidate
who has all of the more undesirable non-policy attributes and all of the conservative policy positions.
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Figure 4: Estimates of Respondents’ Ideal Points (θ) for the Presidential Candidate Choice Exper-
iment. The histogram represents the distribution of the posterior means of the respondent ideal
point parameters (θi for i = 1, . . . , 1003), standardized to mean 0 and variance 1 for the purpose
of identification. The blue curve represents a kernel density estimate for the same distribution.
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Figure 5: Comparison of the Estimated Ideal Points against Respondents’ Self-Reported Ideology
and Partisanship. The panels show estimated ideal points (θi) plotted against respondents’ five-
point ideological self-placement (left) and party identification (right). The solid dots represent
point estimates (posterior means) and the vertical bars show 95% posterior central intervals. The
red lines indicate ordinary least squares regression of the ideal point estimates on the self-reported
ideology and partisanship measures.

there appears to exist distinct clusters of respondents into two “polarized” groups at both ends of

the ideological spectrum and the remaining “moderate” group in the middle.

A question of interest is how our conjoint-based measure of respondents’ ideology compares

to more standard measures of ideology and partisanship based on direct survey questions. In

Figure 5.3, we plot our estimated ideal points against respondents’ self-reported five-point ideology

scores (on the left) and six-point party identification (on the right). The result indicates that

our ideal point estimates are strongly correlated with both of the self-reported measures. This

is remarkable given that our estimates are solely based on responses to conjoint choice tasks on

hypothetical presidential candidates which do not include any direct reference to either candidates’

ideology or party affiliation. It is also noteworthy that our estimated ideal points correlate more

strongly with ideological self-placement (the estimated correlation coefficient = 0.606, with the 95%

central posterior interval of [0.589, 0.623]) than with party identification (0.565, [0.547, 0.583]). This

suggests that subjects did not simply use candidates’ attributes to guess their party and then vote
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accordingly.

5.4 Inference for Quantities of Interest

A key component of our proposed approach is to translate the model parameters to quantities that

can be substantively interpreted as causal effects. Specifically, we calculate the CAMCE as defined

in Section 3.4 based on our estimates of the model parameters. To reiterate, the CAMCE represents

the average (over the randomization distribution) effect of the “treatment” level of an attribute,

relative to the baseline “control” level, on a respondent’s probability of choosing a conjoint profile

that contains the attribute, conditional on the respondent’s ideal point. The CAMCE of 0.2 given

θi = 0, for example, indicates that the treatment level of the attribute on average increases the

choice probability by 20 percentage points (compared to the baseline level) for a respondent whose

ideal point sits right at the mean of the ideological distribution.

Figures 6 and 7 show our estimated CAMCEs for each of the 12 attributes included in our presi-

dential candidate choice experiment. The results largely confirm what we found in our estimates for

the model parameters but put them in terms of more interpretable quantities. First, the CAMCEs

for the non-policy attributes show little to moderate variation across respondents as functions of

their ideal points. In particular, age, education, profession, and campaign violations have almost

equal effects for both liberal and conservative respondents, indicating that these attributes primar-

ily signal candidates’ valence as opposed to their ideological leanings. Interestingly, however, these

four valence attributes appear to have slightly larger effects for ideological moderates, as indicated

by the unimodal shapes of the estimated CAMCE curves. This can be interpreted as evidence

that moderates’ preferences tend to be driven relatively more strongly by non-policy attributes

than policy attributes, wheras the choices of ideological extremists are almost completely based on

candidates’ policy positions, leaving less room for the effects of non-policy attributes.

Second, of the six non-policy CAMCE estimates, the effects for gender and military service

experience do seem to vary depending on whether respondents are liberal or conservative. That is,

female candidates are on average more likely to be chosen by an extremely liberal respondent (with

θi at 2) by about two percentage points, but they are indeed about two percentage point less likely

to be chosen by an extreme conservative whose θi is at −2. For military service experience, the

CAMCE is estimated to be as large as about 3 to 4 percentage points for moderate to conservative
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Figure 6: Estimates of the CAMCEs for the Non-Policy Attributes of Presidential Candidates.
Each of the six plots shows the estimated marginal average component effect for an attribute as a
function of respondents’ ideal points on the taste dimension (θi). The solid lines represent Bayesian
point estimates (posterior means) and the red ribbons show 95% posterior central intervals.
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Figure 7: Estimates of the CAMCEs for the Policy Attributes of Presidential Candidates. See
caption for Figure 6 for the interpretations of the graph elements. Note that the vertical axes for
the plots are scaled differently from those in Figure 6.
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respondents whose θi takes on negative values. However, the CAMCE estimate drops to nearly

zero for respondents who are on the liberal extreme of the ideological spectrum.

Third, compared to the non-policy attributes, the effects of the six policy attributes (Figure 7)

exhibit much greater variation as functions of respondents’ ideal points. (Note that the vertical

axes are differently scaled for Figures 6 and 7 for clearer presentation; Figure A.5 in Appendix A.3

shows the same estimates on a common scale for all attributes.) The heterogeneity is especially

large for position on abortion: on average, the pro-choice position is found to increase the choice

probability for an extremely liberal respondent (θi = 2, which sits right at the end of the support

of the empirical distribution for θi as shown in Figure 5.3) by as much as about 38 percentage

points, whereas it decreases the choice probability by about 31 percentage points for an extremely

conservative respondent (θi = −2). The effect variation is also very large for position on same-

sex marriage, where the pro-gay marriage position is found to increase the choice probability by

about 29 percentage points for the extreme liberal respondent and decrease the probability by 20

percentage points for the extreme conservative respondent.

A natural question to ask is how our IRT-based CAMCE estimates compare to subgroup AMCEs

conditional on standard survey measures of general policy preferences, such as self-reported ideology

and party identification. That is, does our proposed approach add any substantive value to the

more standard approach using these direct measures of ideology as respondent-specific moderators?

To answer this question, we calculated nonparametric subgroup AMCE estimates as proposed by

Hainmueller, Hopkins, and Yamamoto (2014) with respect to self-reported ideology and party

identification. The results are presented in Figures A.7, A.8, A.9 and A.10 in Appendix A.3.

Overall, we find the patterns of the variations in effect estimates to be largely similar between the

model-based CAMCEs and the nonparametric subgroup AMCEs, especially for the self-reported

ideology variable. This is unsurprising, given the strong correlation between these variables and our

estimates of the ideal points, as we discussed in Section 5.3. It is however noteworthy that the IRT-

based estimates tend to be more precise, particularly for the policy attributes. The model-based

estimates also represents the covariation between ideology and effect sizes as a smoother, more

interpretable functional relationship. Thus, our empirical result indicates a remarkable consistency

between the inferences obtained from two starkly different kinds of ideology measurements—one

based on direct questions about abstract concepts, and the other based on concrete choice tasks

mimicking the real-world voting decisions—while suggesting important advantages of adopting a
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more concise, model-assisted approach.

5.5 Robustness Checks

A potential downside of our proposed approach is that it imposes rather strong functional form

assumptions for respondents’ utility function, risking biased inferences if those assumptions are far

from the true data generating process. Indeed, our assumed behavioral model is highly simplistic

in that it allows systematic heterogeneity of preferences only in terms of the assumed latent spatial

dimension. This is in stark contrast with the standard approach to conjoint experimental data

proposed by Hainmueller, Hopkins, and Yamamoto (2014) which requires no modeling assumption

for valid inference other than randomization of the attributes.

A natural question, then, is whether our simple model-based approach does any harm to the

data for making inferences about causal quantities that could be estimated without making model-

ing assumptions, such as the overall AMCEs. In other words, if we translated our model parameter

estimates into the AMCEs, would our estimates noticeably different from the nonparametric esti-

mates of AMCEs à la Hainmueller, Hopkins, and Yamamoto (2014)?

Figure 5.5 shows the result of comparison between the unconditional AMCE estimates based on

our model (blue triangles and bars) and the estimates using the nonparametric procedure proposed

by Hainmueller, Hopkins, and Yamamoto (2014) (red circles and bars). The result shows remark-

able agreement between the two sets of estimates. That is, the point estimates for the AMCEs

are virtually identical for both estimation approaches, the gaps between the two estimates never

exceeding one percentage point. This implies that the arguably strong assumptions entailed in our

model-based Bayesian approach do not appear to cause any noticeable harm to inference in terms

of point estimates for the AMCEs. Interestingly, the uncertainty estimates indicate markedly more

precision in our approach than the nonparametric approach, especially for the attributes that have

large taste (β) parameters such as positions on abortion, same-sex marriage and gun control. This

is unsurprising because our estimates incorporate a lot more information given by the distribu-

tional and functional form assumptions embedded in the model as well as priors. Hainmueller,

Hopkins, and Yamamoto’s approach, in contrast, is specifically designed to be valid without any

such assumptions, producing generally conservative uncertainty estimates at the potential cost of

statistical power. Overall, however, these results suggest that our proposed approach is remark-
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based procedure proposed by Hainmueller, Hopkins, and Yamamoto (2014). The result indicates
that the point estimates are virtually identical between the two procedures and the uncertainty
estimates are reduced for our proposed approach, particularly for the policy attributes.

ably successful in capturing the key latent structure in respondents’ preferences that govern the

patterns of effect heterogeneity in our conjoint data, while not distorting unconditional average

effect estimates.

6 Conclusion

In this paper, we proposed an IRT model for conjoint survey data as a method for analyzing

respondents’ heterogenous preferences about attributes. The proposed method takes advantage of

recent developments in two research traditions for the analysis of survey data — causal inference

and Bayesian scaling — to enable inferences about latent heterogeneity in causal effects. As
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demonstrated by our empirical example, conjoint survey data contain rich information about the

structure of respondents’ preferences that is largely untapped by the current standard methodology.
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Appendix

A.1 Stan Code for IRT Model

functions {

matrix whiten(matrix XX) {

/* De-means and "whitens" (cov = I) XX */

matrix[rows(XX), cols(XX)] DM;

matrix[cols(XX), cols(XX)] SS;

matrix[cols(XX), cols(XX)] PP;

matrix[cols(XX), cols(XX)] WW;

for (d in 1:cols(XX)) {

DM[, d] = XX[, d] - mean(XX[, d]); /* de-mean each column */

}

SS = crossprod(DM) ./ (rows(XX) - 1.0); /* covariance of XX */

PP = inverse_spd(SS); /* precision of XX */

WW = cholesky_decompose(PP); /* Cholesky decomposition of precision */

return DM * WW; /* de-meaned and whitened XX */

}

real probit_to_logit_scale (real x) {

return 0.07056 * pow(x, 3) + 1.5976 * x;

}

}

data {

int<lower=1> D; // num. latent dimensions

int<lower=1> L; // num. attributes

int<lower=1> I; // num. respondents

int<lower=1> N; // num. observations

int<lower=1, upper=I> ii[N]; // respondent for obs n

int<lower=0, upper=1> choice[N]; // response (0/1)

matrix<lower=0,upper=1>[N, L] XX1; // attributes of profile 1

matrix<lower=0,upper=1>[N, L] XX2; // attributes of profile 2

int<lower=-1, upper=1> beta_nonzero[L, D]; // betas set to 0

int<lower=-1, upper=1> beta_sign[L, D]; // betas set to +/-

}

transformed data {

matrix<lower=-1,upper=1>[N, L] XX1_minus_XX2; // attribute differences

matrix<lower=0,upper=2>[N, L] XX1_plus_XX2; // attribute sums

XX1_minus_XX2 = XX1 - XX2;

XX1_plus_XX2 = XX1 + XX2;

}

parameters {

vector[L] gamma; // function of valence and spatial coefficients

matrix[L, D] beta_free; // unconstrained spatial coefficients

matrix[I, D] theta_raw; // ideal point (pre-normalized)

}

transformed parameters {

1



matrix[N, D] disc; // discriminations

vector[N] diff; // difficulty

matrix[I, D] theta; // ideal points (normalized)

matrix[L, D] beta; // spatial coefficients

/* IDENTIFICATION */

/* Normalize thetas [D + D + D(D - 1)/2 restrictions] */

theta = whiten(theta_raw);

/* Restrict betas [D(D - 1)/2 + D restictions] */

for (l in 1:L) {

for (d in 1:D) {

/* Set D(D - 1) betas to 0 */

if (beta_nonzero[l, d] == 0) {

beta[l, d] = 0;

} else {

if (beta_sign[l, d] == 0) {

beta[l, d] = beta_free[l, d];

} else {

/* Restrict sign of D betas */

beta[l, d] = beta_sign[l, d] * fabs(beta_free[l, d]);

}

}

}

}

/* Convert spatial and valence terms into IRT item parameters */

for (n in 1:N) {

disc[n, 1:D] = 2 * XX1_minus_XX2[n, 1:L] * beta[1:L, 1:D];

diff[n] = XX1_minus_XX2[n, 1:L] *
(beta[1:L, 1:D] * beta[1:L, 1:D]’ * XX1_plus_XX2[n, 1:L]’ - gamma[1:L]);

}

}

model {

real pi[N];

// Priors

to_vector(theta_raw) ~ normal(0, 1);

to_vector(beta_free) ~ normal(0, 1);

gamma ~ normal(0, 1);

// Likelihood

for (n in 1:N) {

pi[n] = probit_to_logit_scale(disc[n, 1:D] * theta[ii[n], 1:D]’ - diff[n]);

}

choice[1:N] ~ bernoulli_logit(pi[1:N]);

}

2



A.2 Additional Simulation Results

A.3 Details of the Empirical Application

Attribute Levels
Position on health care government should do more, government should do less

Position on abortion abortion should be legal in most cases, abortion should be illegal in
most cases

Position on gun control protect the right to own guns, control gun ownership
Position on immigration increase immigration, decrease immigration
Position on same-sex marriage favor same-sex marriage, oppose same-sex marriage

Position on tax support raising tax on incomes over $300,000 per year, oppose raising
tax on incomes over $300,000 per year

Age 45 years old, 72 years old
Gender female, male
Education college degree, high school degree
Profession corporate executive, car dealer
Military service experience served in the military, never served in the military

Campaign violations has never been investigated for campaign violation, investigated for
campaign violation but acquitted

Table A.1: Candidate Attributes for the Example Conjoint Experiment. The first six attributes
represent candidates’ positions on policy issues, whereas the other six attributes are candidates’
personal characteristics. We expect the preferences about the policy attributes to differ across
respondents due to their taste variation along the latent ideological dimension, and the preferences
about the personal attributes to have less variation along the dimension.

A.4 Additional Application: 2014 Japanese General Election

We apply our proposed methodology to the conjoint survey data on Japanese voters originally
collected by Horiuchi, Smith, and Yamamoto (2018) (hereafter HSY) as an additional illustration
of the proposed methodology. In this example, we have far less established prior understanding
of how individual attributes are related to the underlying latent ideological dimension than in our
first application. Thus, our goal here is to demonstrate how the proposed method can be used for
a new, meaningful empirical discovery.

A.4.1 Background

In their study, HSY examined Japanese voters’ preferences about political parties in the 2014 House
of Representatives election via a conjoint experiment implemented during the actual campaign
period. Their conjoint profiles represented party manifestos, or policy bundles, which consisted of
positions on nine policy issues identified as particularly salient in the election based on the authors’
analysis of the actual party manifestos. The authors presented randomized combinations of the
nine issue positions as hypothetical party manifestos in pairs and asked respondents to choose the
one they would vote for in the upcoming election.

3
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Figure A.1: Estimated bias of posterior mean for β (top), γ (middle), and θ (bottom) for different
combinations of N and K.
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Figure A.5: Estimates of CAMCEs for all Attributes Presented on the Same Scale.
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Figure A.7: Estimates of Subgroup AMCEs Conditional on Self-Reported Ideology, Non-Policy
Attributes.
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Figure A.8: Estimates of Subgroup AMCEs Conditional on Self-Reported Ideology, Policy At-
tributes.
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Figure A.9: Estimates of Subgroup AMCEs Conditional on Party Identification, Non-Policy At-
tributes.
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Figure A.10: Estimates of Subgroup AMCEs Conditional on Party Identification, Policy Attributes.
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In their original analysis, HSY estimated the AMCEs for each of the nine policy attributes
and interpreted them as estimates of the Japanese voters’ “multidimensional policy preferences.”
While those AMCE estimates are interesting in and of themselves, an important question HSY left
unanswered is whether there is any latent lower-dimensional structure behind voters’ preferences
about individual policy issues. More specifically, previous research has shown that the Japanese
ideological space can be largely described by a single left-right dimension predominantly determined
by international security issues (CITE), although more recent authors argue that the importance of
this dimension has been gradually eroding since the 2000s (CITE). Of the nine policy issues in HSY’s
experiment, two are widely believed to constitute the core of the national discourse on Japan’s
security policy (Collective Self-defense and Constitutional Revision), whereas the remaining seven
issues represent a mixture of economics (Consumption Tax, Employment, Fiscal and Monetary
Policy, and Economic Growth Strategy), diplomacy (Trans-Pacific Partnership), energy (Nuclear
Power), and political reform (National Assembly Seat Reduction). Is the latent space behind
Japanese voters’ policy preferences still primarily determined by the classical security policies in
2014? If so, how are the other, more current policy issues associated with the latent left-right
ideological dimension? How do voters on both ends of the ideological spectrum coalesce in terms
of these new issues?

A.4.2 Results
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