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Abstract

Randomization inference (RI) is typically interpreted as testing Fisher’s “sharp” null hypoth-
esis that all unit-level effects are exactly zero. This hypothesis is often criticized as restrictive
and implausible, making its rejection scientifically uninteresting. We show, however, that
many randomization tests are also valid for a “bounded” null hypothesis under which the
unit-level effects are all non-positive (or all non-negative) but are otherwise heterogeneous. In
addition to being more plausible a priori, bounded nulls are closely related to substantively
important concepts such as monotonicity and Pareto efficiency. Reinterpreting RI in this way
also dramatically expands the range of inferences possible in this framework. We show that
exact confidence intervals for the maximum (or minimum) unit-level effect can be obtained
by inverting tests for a sequence of bounded nulls. We also generalize RI to cover inference
for quantiles of the individual effect distribution as well as for the proportion of individual
effects larger (or smaller) than a given threshold. The proposed confidence intervals for all
effect quantiles are simultaneously valid, in the sense that no correction for multiple analyses
is required, and are thus a “free lunch” added to conventional RI. In sum, our reinterpretation
and generalization provide a broader justification for randomization tests and a basis for ex-
act nonparametric inference for effect quantiles. We illustrate our methods with simulations
and applications, finding that Stephenson rank statistics can provide more informative results
than the more common Wilcoxon rank or difference-in-means statistics. We also provide an R
package RIQITE implementing the proposed approach.
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1. Introduction

1.1. Randomization inference and sharp null hypotheses

Randomization inference (RI), also known as permutation inference, is a general statistical frame-
work for making inferences about treatment effects. RI originated with |[Fisher (1935), who
showed that if the treatment is randomly assigned to units, the hypothesis that no unit was
affected by treatment—the “sharp null of no effects”—can be tested exactly, with no further
assumptions, by comparing an observed test statistic with its distribution across alternative real-
izations of treatment assignment. More generally, the Fisher randomization test can be applied
to any null hypotheses that is sharp in the sense that under it all potential outcomes are known
from the observed data. Furthermore, by testing a sequence of hypotheses, randomization tests
can also be used to create exact nonparametric confidence intervals (Cls) for treatment effects
(Lehmann| [1963). RI thus provides a unified framework of statistical inference that requires
neither parametric assumptions about the data-generating distribution nor asymptotic approxi-
mations that can be unreliable in small samples (Rosenbaum|2002).

Nevertheless, RI has been subject to trenchant critiques. One line of criticism focuses on the
sharp null hypothesis, which has long been dismissed as “uninteresting and academic” (Neyman
1935, 173). Gelman| (2011), for example, argues that “the so-called Fisher exact test almost never
makes sense, as it’s a test of an uninteresting hypothesis of exactly zero effects (or, worse, effects
that are nonzero but are identical across all units).” The crux of this critique is that the sharp
null “does not accommodate heterogeneous responses to treatment,” making it “a very restrictive
null hypothesis” (Keele 2015, 330). In this view, rejecting such an implausible hypothesis conveys
little information of substantive or scientific interest.

A related line of criticism is that using RI for interval estimation requires assumptions that
are arguably as strong as those of its parametric and large-sample competitors. In particular,
deriving interpretable Cls for treatment effects typically requires the assumption that effects are
constant (i.e., invariant across units) or vary according to some known model (Rosenbaum|[2002;
Ho and Imai 2006; Bowers et al[[2013). In many settings, constant effects are implausible and
the correct model for their variation is unknown. Without some version of the constant-effects
assumption, however, RI as currently understood does not justify exact finite-sample inference
regarding the magnitude of treatment effects.

Defenders of randomization inference have responded to these critiques in various ways.
Some, while largely accepting the critiques of the sharp null, argue that RI is nevertheless use-
ful for assessing whether treatment had any effect at all, as a preliminary step to determine
whether further analysis is warranted (e.g., Imbens and Rubin/2015). An alternative proposal,
advanced by Chung and Romano| (2013), is to employ “studentized” test statistics that render per-
mutation tests asymptotically valid under a weak null hypothesis (see, e.g., Ding and Dasgupta
2017; Wu and Ding) 2018} Fogarty| 2019; Cohen and Fogarty 2020)EI Some scholars defend the

1The term weak is typically used to refer to the null hypothesis of no average effect, in contradistinction to the
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constant-effects assumption more forthrightly, regarding it as a convenient approximation that is
preferable to the shortcomings of parametric methods, such as their sensitivity to assumptions
about tail behavior (Rosenbaum|2010a) or inability to account for complex treatment assignments
(Ho and Imai|[2006).

Though reasonable, all these defenses presume that randomization tests are exactly valid
only as tests of a sharp null hypothesis. As such, they do not fully address the concerns of

i

critics who regard sharp nulls as inherently “restrictive,” “uninteresting,” and “academic.” We
offer a more fundamental defense. As we show, many randomization tests of the sharp null are
exactly valid under a corresponding hypothesis under which unit-level effects are bounded but
otherwise hetereogenous. This result in turn provides the basis for Cls for the maximum (or
minimum) individual effect and, by extension, for any quantile of the distribution of unit-level
effects. These results substantially expand the applicability of RI and permit assessment of the

substantive magnitude of treatment effects as well as their statistical significance.

1.2. A motivating example

To motivate our approach, consider Heller et al.’s (2010) experimental study of the effectiveness
of professional development for elementary teachers. The study compared 164 teachers assigned
to take a professional development course with 69 control subjects (for full details, see Section
B.2). The average gain score, based on tests on content knowledge before and after the courses,
was much higher among the teachers who took the courses. A Stephenson rank-sum randomiza-
tion test (see Section yields a p-value near 0, and Lehmann-style test inversion yields a 90%
CI of [16.671,0) for a constant treatment effectEI These results strongly suggest that the profes-
sional development improves teacher’s content knowledge, but their precise interpretation is less
clear. The p-value indicates decisive rejection of the sharp null of no effects, but is rejecting this
hypothesis really informative? And if a constant-effects assumption is not plausible, how should
we interpret the CI?

Our paper sheds light on both of these questions. First, because the Stephenson rank-sum test
is also valid under the null that all unit-level effects are bounded above at 0, the p-value reported
above justifies rejection of the hypothesis that no teacher’s content knowledge increased as a
result of the course. Second, without a constant-effects assumption, the CI reported above can be
interpreted as a confidence statement about the maximum effect—specifically, that the hypothesis
that no effect was as large as 16.670 can be rejected at a significance level of 0.1.

Moreover, we can generalize these results to obtain simultaneously valid CIs for all quantiles

of the effect distribution. These inferences are visualized in Figure [I} which reports the simul-

stronger hypothesis of no effect whatsoever (e.g.,|[Freedman et al.[1997, A-32). We use weak more generally, to refer to
any hypothesis that stipulates the value of some function of the unit-level treatment effects (e.g., their average, maxi-
mum or quantiles) but otherwise allows for arbitrary effect heterogeneity. A weak null is a “composite” hypothesis in
the sense that it encompasses multiple configurations of potential outcomes rather than a single one as a sharp null
does.

2The p-value is approximated by Monte Carlo with 10° simulated assignments. Consequently, the standard error
of this Monte Carlo approximation is at most 5 x 1074,
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Figure 1: The 90% simultaneous lower confidence limits for all quantiles of individual effects in
the study of the effectiveness of professional development for elementary teachers. The uninfor-
mative lower confidence limits of —co for individual effects at lower ranks are omitted.

taneous 90% one-sided confidence intervals for all informative quantiles of individual effects.
Specifically, with () denoting kth-ranked effect, the horizontal lines in Figure (1l represents the
one-sided confidence intervals for T(k) s with 123 < k < 233, i.e., the largest 111 individual ef-
fects. The 149th and 166th largest individual effects, for example, have 90% CIs of (0, c0) and
[6.660, ), respectively. The lower confidence limits for the remaining smallest 122 effects are all
negative infinity, which being uninformative are omitted from the figure.

In addition, the lower confidence limit for the number of units with effects greater than
¢, denoted by n(c), is equivalently the number of quantiles of individual effects T(k)’s whose
confidence intervals do not cover c. We can thus read off these confidence intervals using Figure
Consider the dashed vertical line of ¢ = 0 as an example. Because the line of ¢ = 0 only
intersects the confidence intervals for k < 148, we know we have at least 233 — 148 = 85 units with
significant effects, giving a final interval for 1(0) of [85,233]. By the same logic, a 90% confidence
interval for the number of units with effects larger than 6, n(6), is [68,233]. Equivalently, we can
say we are 90% confident that at least 85/233 = 36.5% of teachers benefited from the professional
development, and that for at least 68/233 = 29.2% of them the effect of the course was at least
6.660.

Reversing the direction of the test yields a 90% CI for the minimum effect of (—o0,23.329].
Since the upper bound of this interval is larger than the lower bound of the CI for the maximum
effect, we cannot reject the hypothesis of a constant treatment effect. In sum, even without
adding assumptions or changing test statistics, our reinterpretation and generalization of RI
justify inferences far richer than mere rejection of the sharp null of no effects.



1.3. Owur contribution

The inferences illustrated in Section are grounded in a novel set of theoretical results. In
particular, in this paper we prove the following:

(i) For any randomization test that employs a test statistic with one of several properties, one-
sided rejection of the sharp null hypothesis that the treatment 7; equals some constant J;
for each unit 7 also implies rejection of any null hypothesis under which each 7; is bounded

on one side by its corresponding ;.

(ii) Test statistics with the requisite properties include the difference of means, the Wilcoxon

rank sum, and many other commonly used statistics.

(iii) For tests in this class, inverting a sequence of tests provides confidence intervals for the

maximum (or minimum) individual effect.

(iv) For rank-based members of this class, when treatment assignments are exchangeable across
all units, this procedure can be extended to yield simultaneously valid confidence intervals
for all quantiles of the treatment-effect distribution (and, by extension, for the proportion

of units with effects larger/smaller than a given threshold).

(v) Confidence intervals for the range of unit-level effects can be obtained by combining two

one-sided randomization tests, providing an exact test of effect heterogeneity.

These results have important implications for statistical practice.

First, “bounded” hypotheses are often of substantive interest in themselves. Unlike sharp
hypotheses, which are concentrated at a particular point in the parameter space, bounded hy-
pothesis cover a range of treatment effects. Consequently, their prior plausibility is greater and
their rejection is thus more informative. In addition, there are a number of theoretically or
methodologically important special cases of bounded hypotheses. In economics, for example, a
change is considered a “Pareto improvement” if it makes at least one person better off while hurt-
ing no one (Mishan|[1982, 34). Consequently, the claim that an intervention was Pareto improving
can be assessed by testing the bounded null hypothesis that all effects were greater than or equal
to zero. Similarly, instrumental-variable estimation of causal effects is typically conducted under
a monotonicity assumption that the instrument has non-negative or non-positive effects on the
treatment (Angrist et al. [1996). In short, there are many situations where testing (and possibly
rejecting) a bounded null hypothesis is theoretically or practically important.

Second, these results provide a basis for inferences regarding the distribution of treatment
effects across units. Specifically, they permit interval estimation of treatment effect quantiles.
Existing nonparametric methods for estimating causal effects focus overwhelmingly on aver-
age effects of various kinds. Although averages are often the best summary statistic, quantiles
characterize the effects of treatment more completely and robustly, especially when effects are
highly heterogeneous. For example, quantiles are more useful in situations where treatment has

a positive effect on average but the question of interest is how many subjects are harmed by it.



Although there are existing RI methods for “quantile treatment effects” (the treated—control dif-
ference in outcome quantiles; e.g., Cattaneo et al. 2015), to our knowledge ours is the first aimed
at quantiles of the distribution of eﬁ‘ectsﬂ In addition to being interesting in themselves, quantile
CIs from two one-sided tests can be combined to yield tests and CIs for the range of treatment
effects.

In sum, our reinterpretation of randomization inference provides the basis for several novel
theoretical results as well as practical methods useful to applied statisticians. Significantly, these
advances are a “free lunch” in the sense that they require no additional assumptions. Users of
RI can continue to use the same procedures while interpreting them in richer ways, or they can
use our open-source R package RIQITE to supplement their analyses with quantile CIs and other
extensions. RIQITE is publicly available at https://github. com/li—xinran/RIQITEﬁ

The remainder of this paper is organized as follows. Section [2|formally introduces our frame-
work. Section [3|discusses the properties of test statistics to which our results apply and provides
examples. Section [4] demonstrates the validity of randomization tests under bounded null hy-
potheses and explains how this justifies Cls for the maximum individual treatment effect. Section
generalizes these results to CIs for treatment effect quantiles. Section [p| shows how ClIs for the
range of effects can be derived from two one-sided randomization tests. Section [7| conducts
simulation studies for the performance of these procedures under various conditions. Section
applies the methods to two applications: testing monotonicity of an instrumental variable and
evaluating the effectiveness of an experimental professional development program. The paper
concludes with a discussion of the broader implications of our reconceptualization and general-
ization of RI.

2. Framework, notation, and the Fisher randomization test

2.1. Potential outcomes, treatment effects and treatment assignment

We consider a randomized experiment on n units with two treatment arms. Using the po-
tential outcome framework (Neyman! 1923; Rubin [1974), we use Y;(1) and Y;(0) to denote the
potential outcomes under treatment and control, respectively, for units i = 1,...,n. We use
Y (1) = (Y1(1),Ya(1),...,Y,(1)) " and Y (0) = (Y1(0), Y2(0),...,Y,(0))" to denote the treatment
and control potential outcome vectors for all units. Let 7; = Y;(1) — Y;(0) be the individual treat-
ment effect for unit i, and 7 = (7, 1, . . .,Tn)T be the vector of individual treatment effects
Let Z; be the treatment assignment for unit i, where Z; equals 1 if the unit receives the active

3For the distinction between differences in outcome distributions (e.g., average or quantile treatment effects) and
distributions of outcome differences (e.g., the distribution of individual effects), see Manski (2009, 157-8).

“The package’s Github page includes installation instructions, detailed explanations of the main functions in R
documentation, and a simple illustrating example. In addition, the supplementary materials for this paper contain a
replication of the three real data analyses in the paper using RIQITE.

5As a side note, we focus on general outcomes with the treatment effect in the difference scale, which may not be
most appropriate in some applications; see, e.g., [Edwards|(1963) and [Xie et al.| (2008).
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treatment and zero otherwise, and Z = (Z1,7,, ... ,Zn)T be the treatment assignment vector
for all units. For each unit i, the observed outcome is one of its two potential outcomes, de-
pending on the treatment assignment Z;. Specifically, V; = Yi(Z;) = Z;Y;(1) + (1 — Z;)Y;(0). Let
Y =M,Ys..., Yn)T be the observed outcome vector for all units. For descriptive convenience,
for any treatment assignment vector z € {0,1}", we define Y (2) = z0Y (1) + (1 — 2) o Y (0) to
denote the corresponding observed outcome vector, where o stands for the element-wise multi-
plication. We can then write the observed outcome Y asY =Y (Z) = ZoY (1)+(1—Z) oY (0).

In this paper, we conduct randomization inference where all potential outcomes are viewed
as fixed constants, and use randomization of the treatment assignments as the “reasoned basis”
for inference (Fisher|(1935). This is equivalent to conducting inference conditional on all the
potential outcomes, and thus requires no model or distributional assumptions on the potential
outcomes. Consequently, the randomness of the observed data comes solely from the random
treatment assignment. Therefore, the distribution of the treatment assignment Z, also called
the treatment assignment mechanism, plays an important role in governing statistical inference.
We use Z C {0,1}" to denote the set of all possible treatment assignments for the n units, and
characterize the treatment assignment mechanism by the probability mass function Pr(Z = z) for
all z € Z. Because Z is used to denote the observed treatment assignment, to avoid confusion,
we sometimes use A to denote a generic random treatment assignment vector following the same
distribution as Z, i.e.,, Pr(A = z) = Pr(Z = z) for all z € Z. One class of treatment assignment
mechanism that will receive special attention is the exchangeable treatment assignment, formally

defined as follows.

Definition 1. A treatment assignment is said to be exchangeable if the distribution of treatment
assignment vector Z is invariant under permutation of its coordinates, i.e., (Z1,2Z3,...,Zy) ~

(Zr()s Zn(2)r- -1 Zn(n)) for any permutation 7t(-) of {1,2,...,n}.

Popular treatment assignment mechanisms satisfying Definition (1| include Bernoulli random-
ized experiment (BRE) and completely randomized experiment (CRE). Specifically, under a BRE, the
treatment assignments Z;’s are independent and identically distributed (i.i.d.) Bernoulli random
variables with probability p being 1, for some p € (0,1). Under a CRE, m units will be randomly
assigned to treatment, and the remaining n — m units will be assigned to control, where m and
n — m are fixed positive integer.

We use Unif[0, 1] to denote a uniform random variable on [0,1]. We introduce < to denote
element-wise inequality between two vectors: for any two vectors £ and 7 of the same dimension,
& < n if and only if each coordinate of £ is less than or equal to the corresponding coordinate of

n.

2.2. Sharp null hypotheses and imputation of potential outcomes

Fisher| (1935) proposed to test the null hypothesis that the treatment has no effect for any unit,
that is Y (1) = Y (0) or equivalently 7 = 0. Such a null hypothesis is called a sharp null

8



hypothesis, under which all missing potential outcomes can be imputed from the observed data.
Specifically, under Fisher’s null of no effect, we have Y;(1) = Y;(0) = Y; for all units i = 1,...,n.
After imputing all the potential outcomes, we can know the null distribution of any test statistic
exactly, which further provides an exact p-value. Such a testing procedure is often called the
Fisher randomization test, and the resulting p-value is called the randomization p-value. The
Fisher randomization test also works for general sharp null hypotheses, as described in detail
below.

Consider a general sharp null hypothesis where the individual treatment effect for unit i is J;
fori=1,...,n, where § = (J1,6,.. .,5,1)T € R" is a predetermined constant vector. That is

Hs:T=29. (1)

Under the null Hs in (1), we are able to impute all the potential outcomes. Specifically, given the
observed data Z and Y/, for the null Hs, the imputed treatment and control potential outcome

vectors for all units are, respectively,

Yz5(1) =Y +(1—-2Z)0d=ZoY(1)+(1—Z)o{Y(0)+4},
Y250 =Y —Zod=Zo{Y(1)—68}+(1—2Z)oY(0), @)

where we use the subscripts Z and 6 to emphasize that the imputed potential outcomes are
deterministic functions of the observed treatment assignment, the null hypothesis of interest and
the true potential outcomes. Importantly, the imputed potential outcomes in are generally
different from the true potential outcomes, and they become the same if and only if the sharp
null Hs in (D) is true.

2.3. Fisher randomization test

There are at least two popular approaches for conducting Fisher randomization tests for general
sharp null hypothesis Hys in (I)), represented by the textbooks of [Rosenbaum/ (2002) and Imbens
and Rubin| (2015), respectively. The main distinction between these approaches lies in the choice
of test statistic. For conciseness, we will focus on the approach from Rosenbaum| (2002) in the
main paper, and relegate the discussion on the other approach from Imbens and Rubin| (2015) to
the supplementary materials.

Let t(-,-) : Z x R" — R denote a generic function with two arguments: the first a treatment
assignment vector z € Z, and the second an outcome vector y € R". Following Rosenbaum
(2002), we consider testing the sharp null Hs in (I) using test statistic of the form ¢t(Z,Yz,(0)),
which depends on the observed treatment assignment Z and the imputed control potential out-
comes Yz 5(0) in (). Often the test statistic {(Z,Yz,(0)) compares the imputed control po-
tential outcomes of treated units to those of control units (e.g., the average difference between
the treated outcomes adjusted by corresponding J;’s and the control outcomes). Under H;, the

imputed control potential outcome Yy 5(0) is always the same as the true one Y (0), and thus,
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for any treatment assignment vector a € Z, the corresponding value of the test statistic would
then be t(a, Y, 5(0)) = t(a, Y (0)) = t(a,Yz,s(0)). This means we can examine what ¢ should
be for any possible value of the treatment assignment. Therefore, for the null Hg, the imputed
randomization distribution of the test statistic has the following tail probability:

Gzs(c) =Pr{t(A,Yz5(0)) >c} = )_ Pr(A=a)l{t(a, Yz5(0)) >c}, (ceR) (3)
acz
and the corresponding randomization p-value is the tail probability evaluated at the observed
value of the test statistic:

Pz =Gzs{t(Z,Yz50)} = ) Pr(A=a)l{t(a Yzs(0) >t(Z,Yzs500))}. (4)

acZ

When Hs is true (i.e., 7 = 4), the imputed randomization distribution Gz s(-) in (3) reduces
to Gzs(c) = Pr{t(A,Y(0)) > c}, and the randomization p-value pzs = pz- is stochastically
larger than or equal to Unif[0, 1] (the difference is due solely to the discrete nature of the p-value
distribution). That is, pz s in () is a valid p-value for testing the sharp null Hs.

In contrast to typical descriptions of randomization inference, we do not simplify the imputed
potential outcomes in () and () to the true ones, because later we will investigate the property
of the randomization p-value even when the sharp null hypothesis fails. We emphasize that both
Gzs(-) and pz s are deterministic functions of the treatment assignment Z, the null hypothesis
of interest §, the true potential outcomes (Y (1),Y (0)), and the treatment assignment mecha-
nism, where the latter two are fixed and the dependence on them is suppressed. Moreover, the

randomness in Gz 5(-) and pz s comes solely from the random treatment assignment Z.

Remark 1. Inspired by the previous discussion, it should not be surprising that we can also use
test statistics of the form t(Z, Yz 5(1)), which involves the imputed treatment potential outcomes
instead of imputed control ones. This can be achieved by switching the labels of treatment and
control and changing the signs of the outcomes.

As a side note, the Fisher randomization tests in Imbens and Rubin| (2015) use test statistics
of form t(Z,Y ), which often compare the observed outcomes of treated units to those of control
units (e.g., the difference in outcome means between treatment and control groups). Analogous
to Section |4}, such a randomization test can also be valid for testing bounded null hypotheses; see
the supplementary materials for details. However, our generalization for inferring quantiles of
individual effects (as in Section 5) relies crucially on the use of test statistics of form #(Z, Yz 5(0)).

This also explains why we focus on the randomization p-value of form () in the main paper.
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3. Test statistics: properties and examples

3.1. Three properties of test statistics

An important component of the Fisher randomization test described in Section is the test
statistic. As discussed shortly, test statistics satisfying three certain properties can provide
broader justification for the Fisher randomization test, beyond its validity only for sharp null
hypotheses.

The first property is called effect increasing (a term borrowed from [Rosenbaum, 2002, who
studies the unbiasedness of randomization tests). Intuitively, an effect increasing statistic t(z,y),
viewed as a function of the outcome vector y with z fixed, is increasinglﬂ in those y;’s with z; =1

and decreasing in those y;’s with z; = 0. We formally define it as follows.

Definition 2. A statistic f(-, -) is said to be effect increasing, if t(z,y + zon+ (1 —2z) 0 &) > t(z,y)
forany z € Z and y,n,§ € R" withn = 0 = &.

The second property is called differential increasing. Intuitively, a differential increasing statistic
t(z,y) is one such that, if the outcomes for a subset of units are increased, then the change of the
statistic is maximized when it happens that this subset of units receive treatment. We formally

define it as follows.

Definition 3. A statistic f(-,-) is said to be differential increasing, if t(z,y +aomn) —t(z,y) <
t(a,y +aomn)—t(a,y) for any z,a € Z and y,n € R" with n = 0.

The third property is called distribution free; see also Rosenbaum) (2007b)). Different from the
previous two properties, this property depends not only on the test statistic ¢(-, ), but also on
the treatment assignment mechanism. In particular, for a distribution free test statistic (-, -), the
distribution of t(Z,y) does not depend on the value of y € R”. We formally define it as follows.

Definition 4. A statistic ¢(-,-) is said to be distribution free if, for any y,y’ € R", t(Z,y) and
t(Z,y') follow the same distribution, where Z follows the treatment assignment mechanism.

For the above three properties, one does not necessarily imply the other; see the supplemen-
tary materials for more details. However, many commonly used test statistics are both effect
increasing and differential increasing, and many rank-based test statistics (with appropriate han-
dling of ties) are also distribution free when the treatment assignment is exchangeable (e.g., a
Bernoulli or completely randomized experiment, as defined in Section [2.1)); see the next subsec-

tion for more details.

®Throughout the paper, an increasing function refers to a nondecreasing function, not a strictly increasing function.
Similarly, a decreasing function refers to a nonincreasing function.
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3.2. Examples of test statistics

We will discuss two classes of test statistics, which cover many test statistics commonly used for
randomization tests. In particular, we will provide sufficient conditions for these test statistics to
satisfy the properties introduced in Section

The first class of test statistics has the following form:

n

n

t(zy) = Z%Zill’u(yi) - ;(1 — zi)%0i (¥i), (5)

i= i

where the ¢;(-)’s and ;(-)’s are constant functions from R to R but can depend on the treat-
ment assighment mechanism. For example, in a general randomized experiment, if we choose
$i(y) = y/{nPr(Z; = 1)} and ¢;i(y) = y/{nPr(Z; = 0)} forall 1 <i < n, then ;(Z,Y") re-
duces to the usual Horvitz-Thompson estimator for the average treatment effect. In a special case
of a CRE with m units receiving treatment, 1(Z,Y) =m 'Y, ZY; — (n—m) "1 Y1, (1 - Z)Y;
further reduces to the difference-in-means estimator. The following proposition shows that the
statistic in (5) satisfies Definitions 2| and [B|as long as 91;(-)’s and t;(+)’s are increasing functions.

Proposition 1. Statistics t1(-,-) of the form in (5) are both effect increasing and differential in-
creasing if 1;(-) and ¥y;(-) are monotone increasing functions for all 1 < i < n.

The second class of test statistics depends only on the ranks of the outcomes. For any vector
y € R" and for each 1 < i < n, we use r;(y) to denote the rank of the ith coordinate of y, where
larger rank corresponds to larger outcome value. We briefly defer the exact definition of rank in
the presence of ties. The second class of test statistics has the following form:

n
t(z,y) =Y zip(ri(y)), (6)
i=1
where ¢(-) is a constant function from R to R. For example, if we choose ¢(r) = r to be

the identity function, then #,(Z,Y) reduces to the Wilcoxon rank sum statistic. The classes of
statistics satisfying the three properties in Section 3.1| are overlapping but not nested: In general,
the statistic #1(-,-) in (5) is not distribution free, and the statistic t(-,-) in (6) is not differential
increasing; see the supplementary materials for more details.

Now we discuss the subtle issue of defining ranks when there exist ties. There are multiple
ways to define ranks for ties, see, e.g., the R documentation for the function rank (R Core Team
2013). Consider an arbitrary outcome vector y € R". The method “random” puts equal values
of y/’s in a random order, the methods “first” and “last” rank equal values of y;’s based on
their indices in an increasing or decreasing wayﬂ and the method “average” replaces their ranks

by the corresponding average. The first three methods will always produce ranks from 1 to n,

For example, if we rank the coordinates of y using the “first” method, then r;(y) < 1j(y) if and only if (a) y; < y;
or (b) y; =yjand i <j.
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which is important for the distribution free property in Definition |4, while the ranks from the
last generally depend on the value of y.

The following proposition gives sufficient conditions for the test statistic in (6) to satisfy
Definitions [2] and [ introduced in Section 3.1

Proposition 2. (a) The statistic (-, -) in (6) is effect increasing if ¢(-) is a monotone increasing
function and the “first” or “last” method is used for ties. (b) The statistic t(+,-) is distribution
free if the “first” or “last” method is used for ties and the treatment assignment Z is exchangeable
as in Definition [1jand independent of the ordering of units.

In practice, we can implement the “random” method for ties by first randomly permuting the
coordinates of y and then ranking equal outcomes using the “first” methods. If Z is exchangeable
and we use the “random” method for ties, then after we randomly permute the ordering of units,
Z must be independent of the ordering, and the ties are ranked based on the “first” method.
From Proposition [2] the statistic in (6) will be distribution free. We emphasize that using the
“random” method for ties is crucial for the distribution free property. First, a defined method
for ties is important even for continuous outcomes, because some outcomes will become the
same when we later invert tests for, e.g., a sequence of constant treatment effects. Second, it is
important to rank equal outcomes randomly, since in practice a received data set may be ordered,
e.g., with all treated units ahead of control ones.

For the usual “average” method for ties, whether the statistic in (6) is effect increasing de-
pends on the values of ¢(-) for tied ranks. If we define the value of ¢(-) for tied ranks as the
average value of ¢(-) evaluated at those ranks under the “first” or “last” method, then the statistic
(6) is effect increasing. This follows directly from Proposition [2] by noting that the resulting value
of the statistic is essentially the average of it under the “first” method of ties over all possible
permutations of the ordering. From the above, we can also know that the classical Wilcoxon rank

sum statistic with “average” method for ties is effect increasing.

3.3. Stephenson rank sum statistics

Despite the generality of the test statistics discussed before, in this subsection we focus on a
special class of test statistics developed by Stephenson and Ghosh) (1985), because of its often
superior power discussed later. Stephenson rank sum statistics can be defined as the number of
subsets of size s in the data in which the largest response is in the treated group. This can be
represented as a two-sample statistic of form (6) with a rank score function of

r—1

¢(r) = (s B 1) ifr>s, and ¢(r) =0 otherwise,

for some fixed integer s > 2. The Stephenson rank sum statistic with s = 2 is almost equivalent
to the Wilcoxon rank sum statisticﬁ However, as s increases beyond 2, the Stephenson ranks

8The Stephenson ranks with s = 2 are each one less than the corresponding Wilcoxon ranks, leading to almost
identical behavior (Rosenbaum|[2007a), 1168).
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place more and more weight on the larger responses.

Rosenbaum (2007a) proposed to use Stephenson ranks to detect uncommon-but-dramatic
responses to treatment. Intuitively, this is because as the subset size s increases, it becomes
increasingly likely that the largest response in a given subset will be one with an unusually large
treatment effect. Thus, compared to the difference-in-means and the Wilcoxon rank sum, whose
power is greatest against a constant location shift, the Stephenson rank sum has greater power
against alternatives under which effects are heterogeneous and a few are highly positive. This
advantage of Stephenson rank sum statistics is particularly relevant for our proposed theory and
methods. We defer detailed discussion of this to later simulation studies.

4. Broader justification for Fisher randomization test

4.1. Validity of randomization p-values for bounded nulls

As discussed in Section the randomization p-value pz s is always valid for testing the sharp
null Hs in (I) given any test statistic (-, -). Our question is, can the randomization p-value pz s
also be valid for testing a weak null hypothesis that does not fully specify all the individual
treatment effects?

We will demonstrate shortly that, under certain intuitive conditions on the test statistic, the
randomization p-value pzs for testing the sharp null hypothesis Hs is also valid for testing
a bounded null, which states that each individual treatment effect is less than or equal to the
corresponding coordinate of §. We formally introduce this bounded null hypothesis as follows:

Hes: 17 <6, ()

where 6 is a constant vector in R”. Importantly, the null Hs in (7) is composite, under which
the exact distribution of the test statistic is generally unknown. The bounded null hypotheses
can often be of interest in practice, and the choice of § in (7) depends on the application of
interest. For example, we can choose é = 0 if we are interested in whether the treatment has a
positive effect for any unit. This is related to pareto efficiency and monotonicity assumption in
instrumental variable analysis; see Section If we are also interested in the magnitude of the
effects, we can choose § = c1, under which the null hypothesis in (7) assumes that all individual
treatment effects are at most c; see Section |4.3

The following theorem shows that the original Fisher randomization test, designed only for

testing sharp null hypotheses, can also be valid for testing certain bounded null hypotheses.

Theorem 1. (a) If the test statistic (-, -) is either differential increasing or effect increasing, then
for any constant § € R”, the corresponding randomization p-value pz s in for the sharp null
Hs in (T)) is also valid for testing the bounded null Hgs in (7), i.e., under Hgs, Pr(pz,s < a) < a for
any « € [0,1]. (b) If the test statistic ¢(-, -) is differential increasing, or it is both effect increasing

and distribution free, then for any possible assignment z € Z, the corresponding randomization
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p-value p, s in (@), viewed as a function of § € R”, is monotone increasing, i.e., p,s5 < p, 5 for
any 8 < 6.

From Theorem [I[(a), when the test statistic satisfies certain properties, the rejection of Hj also
implies that there exists at least one unit i whose treatment effect is larger than J;. For the usual
null Heq of additive treatment effect ¢ for some ¢ € R, the rejection of H¢; then implies that there
exists at least one unit whose treatment effect is larger than c. Furthermore, Theorem a) also
holds for general assignment mechanisms beyond BRE and CRE, such as blocking (Miratrix et al.
2013) or rerandomization (Morgan and Rubin/2012; Li et al.[2018).

Theorem b) presents a stronger conclusion than (a), but with stronger condition on the test
statistic. Specifically, for any 6 € R”, if the bounded null H.s holds (i.e., 7 < 6), then Theorem
[I{b) implies that the randomization p-value pzs > pz, and is thus stochastically larger than
or equal to Unif[0, 1]. More importantly, Theorem [I[b) is useful for constructing confidence sets
for the true treatment effect 7. In principle, one could invert randomization tests for all possible
sharp null hypotheses Hs’s to get confidence sets for the true treatment effect 7. However,
enumerating all possible sharp null hypotheses is generally computationally intractable, except
in the cases of binary or discrete outcomes (see Rigdon and Hudgens|2015). For discrete outcomes
where enumeration is possible, Theorem b) can help reduce the number of enumerations (Li
and Ding|[2016).

For general outcomes, Theorem [I[(b) can help provide meaningful confidence sets for T under
practical computational constraints. For any « € (0,1), the 1 — a confidence set for T by inverting

randomization tests has the following equivalent forms:

(6:pzs>a6€R}Y={5:pzs<adscRI= N {n:in<dnert. @

6:pzs<a,dcR"

Our confidence set consists of all points 17 not in the “shadow” of any given hypothesis that can
be rejected. Therefore, for any vector 4 with a corresponding randomization p-value less than or
equal to «, the 1 — a confidence set must be a subset of {n:n x4,n € ]R”}B, a set in which
no element is uniformly bounded by 4.

4.2. Sketch proof of the validity of randomization tests for bounded null

We now give the high level proof of Theorem [I(a)—with some technical details relegated to
the supplementary materials—to provide some intuition for this broader justification of Fisher
randomization tests. Suppose the bounded null H.s in (7) holds, i.e., the true treatment effect
satisfies 7 < 8. Then, by the definition in (2), the imputed potential outcomes satisfy

Yz5(1) =Y (1) =(1—Z)o(6—7) 0 and Yz50)—Y(0)=2Zo(r—8)<0. (9

This is because any actual treated value is smaller than or equal to the imputed, and any actual

control value is larger than or equal to the imputed.
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We first consider the case in which the test statistic is effect increasing. Similar to , for
any a € Z, the imputed control potential outcome if the observed treatment assignment was a
would be Y, 5(0) =Y (a) —aocd =ao{Y (1) -8} + (1 —a)oY(0), and the difference between
Yz 5(0) and Y, 5(0) has the following equivalent forms:

Y7,5(0) — Y45(0) = a0 Yz,5(0) + (1 —a) o Yz4(0) —ao{Y(1) -} — (L—a) oY (0)
=ao{Yzs(1) =Y (1)} + (1 —-a)o{Y¥zs(0) —Y(0)}

From (9) and Definition 2| t(a,Yz5(0)) > t(a, Ya,5(0)). Thus, for any ¢ € R, the imputed tail
probability Gz 5(c) in (B) of the test statistic can be bounded by

Gzes(c) =Y Pr(A=a)l{t(a, Yzs(0) >c} > Y Pr(A=a)l{t(a Yas(0)) >c},
acz acz
where the right hand side is actually the tail probability of the true randomization distribution
of the test statistic t(Z,Yz5(0)). Therefore, we can derive that pzs = Gzs(t(Z,Yzs(0))) is
stochastically larger than or equal to Unif[0, 1], i.e., it is a valid p-value for testing Hs.
We then consider the case in which the test statistic is differential increasing. From (9),

t(a, Y (0)) —t(a,Yz,5(0)) = t(a,Yz,;5(0) + Z o (6 — 7)) — t(a, ¥z,4(0)). (10)

From Definition [3| the change of the statistic in (10) is maximized at a = Z, which immedi-
ately implies that t(Z,Y (0)) —t(Z,Yz5(0)) > t(a, Y (0)) —t(a,Yz,s(0)) for any a € Z. Thus,
t(a,Yz5(0)) —t(Z,Yz5(0)) > t(a,Y(0)) —t(Z,Y (0)) for any a € Z, and the randomization
p-value pz s in (@) is bounded by

pzs= ), Pr(A=a)l{t(a,Yz5(0)) >t(Z,Yz50))}
acZ

> Y Pr(A=a)l{t(a,Y(0) >t(Z,Y(0)},
acZ
which is actually the tail probability of the true randomization distribution of ¢(Z, Y (0)) evalu-
ated at its realized value. Therefore, we can derive that pz s is stochastically larger than or equal
to Unif[0, 1], i.e., it is a valid p-value for testing Hs.

Although both effect increasing and differential increasing test statistics can lead to valid
randomization tests for bounded null hypotheses, their proofs are rather different, as shown
above. Specifically, the randomization p-value pz 5 using effect increasing test statistic is bounded
by the tail probability of {(Z, Yz 5(0)) evaluated at its realized value, while that using differential
increasing test statistic is bounded by the tail probability of #(Z,Y (0)) evaluated at its realized
value. The two bounds are generally different, although they are both stochastically larger than
or equal to Unif|0, 1].
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4.3. Inference for the maximum individual treatment effect

Consider a sharp null hypothesis H.; of constant treatment effect ¢ for some ¢ € R. From Theo-
rem [Ifa), under our conditions on the test statistic, the randomization p-value for the sharp null
H¢q can also be valid for the bounded null Hx.q, which, letting Tmax = maxj<;<y, T, is equivalent
to the null hypothesis that Tnax < c. This immediately implies that inverting randomization tests
for a sequence of constant treatment effects can provide confidence sets for the maximum indi-
vidual effect Tmax. Moreover, from Theorem b), the resulting confidence sets can be intervals of

forms (¢, c0) or [c,00). We summarize the results in the following corollary.

Corollary 1. (a) If the test statistic (-, -) is either differential increasing or effect increasing, then
for any « € (0,1), the set {c : pz1 > a,¢c € R} is a 1 — a confidence set for the maximum
individual effect Tmax. (b) If the test statistic is differential increasing, or it is both effect increasing
and distribution free, then the confidence set must have the form of (¢, ) or [¢,00) with ¢ =
inf{c:pzea >a,ceR}.

The confidence intervals for the maximum individual effect in Corollary|l|can also be thought
of as intervals stating where at least some of the individual treatment effects lie, and the more
homogeneous the effects are, the more individual effects these intervals will contain.

5. Randomization test for quantiles of individual treatment effects

5.1. Randomization test for general null hypotheses

For a general null hypothesis of interest, e.g., 7 € H C R", we can always obtain a valid p-value
by maximizing the randomization p-value pzs in (4) over 6 € H. That is, sups_4, Pz, is a valid
p-value for testing the null hypothesis of 7 € H. Unfortunately, such an optimization can be quite
challenging, due to the complicated dependence of the imputed null distribution Gz s(-) in (3)
on the hypothesized effects 4. Specifically, the exact calculation of Gz s(-) involves enumerating
all possible treatment assignments, which is generally infeasible even with moderate sample size;
in practice, we often use the Monte Carlo approximation. Thus, Gz s(-) generally has no simple
expression. Moreover, the p-value pz s is the value of Gz s(+) evaluated at the realized value of
the test statistic, £(Z,Yz5(0)), which itself also depends on d. These indicate the difficulty of
the optimization of pz s over 4. To ease computation, we consider using a distribution free test
statistic. As discussed below, the optimization for sup;_,, pz,s will reduce to one for the realized
value of the test statistic.

From Definition 4}, the imputed randomization distribution (3) of a distribution free test statis-
tic ¢(+, ) under the null hypothesis Hs in (1)) has the following equivalent forms:

Gzos(c) =) Pr(A=a)l{t(a,Yz5(0) >c} =) Pr(A=a)l{t(ay) >c}=Golc), (11)

acZ acZ
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where y € R" can be any fixed vector and Gy(c) is a tail probability function that does not
depend on the observed assignment Z or the null hypothesis of interest 4. By the definition in
(@) and the fact that Gy(c) is decreasing in c, implies that

suppzs =supGzs {tH(Z,Yz,s(0))} =supGo{tH(Z,Yz,s(0))} < Go { inf t(Z, YZ’(;(O))} , (12)
s deH deH o€H

where the last inequality becomes equality if Go(-) is continuous at infsey t(Z,Yz,5(0)) or

t(Z,Yz,5(0)) can achieve its infimum at some § € #H. Therefore, the right hand side of

is also a valid p-value for testing the null of 7 € H, and more importantly, its optimization

becomes much simpler, because it now involves only minimization over a known and generally

closed-form function of 4. For completeness, we summarize the results below.

Theorem 2. For any distribution free test statistic and any constant region H C R", the supre-
mum of the randomization p-value sups., pz,s, as well as its upper bound on the right hand
side of (12), is valid for testing the null hypothesis of = € H.

Theorem [2| avoids the intractability of Gz s(-) and reduces the optimization to cases where
the target t(Z,Yz,(0)) can have a closed-form expression as a function of 4. Furthermore, as
demonstrated in the next subsection, when considering null hypotheses on quantiles of individ-
ual effects and using rank sum statistics, such an optimization can have a closed-form solution.

Below we give two additional remarks. First, the distribution free property for test statistics
is also utilized by [Rosenbaum| (2007b) for analyzing the magnitude of treatment effects in the
presence of interference. In particular, it helps derive the distributions of certain statistics under
a uniformity trial. By contrast, the distribution free property here mainly helps ease the compu-
tation of the valid p-value in (12). Second, as suggested by a reviewer, another way to overcome
the complex dependence of Gz s(-) on 4 is through asymptotic approximation, under which we
can approximate Gz s(-) by a closed-form expression of §. However, as discussed shortly, when
considering null hypotheses on quantiles of individual effects, some units are allowed to have
infinitely large individual effects. Consequently, we will consider cases allowing elements of &
to take extreme and even infinite values, which may destroy the asymptotic approximation for
Gzs(). On the contrary, using Theorem 2| with rank-based distribution free test statistics, the
inference will be not only finite-sample valid but also robust to extreme values in §; see also the

related discussion in Remark 2

5.2. Inference for quantiles of individual treatment effects

We sort the true individual treatment effects in an increasing order: 7(;) < Tp) < ... < T(y),
where T(n) is equivalently the maximum individual effect Tmax studied in Section In this
subsection, instead of only the maximum individual effect, we intend to infer general quantiles
of the individual treatment effects T(k)’s for 1 < k < n, where k = n corresponds to the maximum

or largest individual effect, k = n — 1 corresponds to the second largest individual effect, and
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so on. Specifically, for any 1 < k < n and any constant ¢ € IR, we consider the following null
hypothesis that the individual effect of rank k is at most c:

Hk,c : T(k) <c. (13)

In the special case of k = n, Hy reduces to the bounded null H. as in (7), which focuses on
the maximum individual effect T(n) = Tmax- Define Hy, = {0 € R": 5(k) < ¢} C R" as the set of
vectors whose elements of rank k are smaller than or equal to c. Then the null hypothesis Hy . in
can be equivalently represented as 7 € Hj .

We consider testing the null hypothesis Hj . in using the randomization p-value pz s
in @) with an effect increasing and distribution free statistic (-, -). Specifically, we focus on
randomized experiments with exchangeable treatment assignment including BRE and CRE, and
use the test statistic in (6) with a monotone increasing function ¢(-) and the “random” method for
ties. We assume that the ordering of the units has been randomly permuted and is independent
of the treatment assignment. Under this new ordering, we simply rank the units using the
“tirst” method for ties. For descriptive convenience, we call such a statistic a rank score statistic,
formally defined as follows.

Definition 5. A statistic ¢(+, -) is a rank score statistic, if it can be written as t(z,y) = Y./ ; zip(ri(y)),
where the score function ¢(-) is monotone increasing and the rank function r(-) uses the “ran-
dom” method, or equivalently the “first” method assuming the ordering of units has been ran-
domly permuted, for ties.

From Proposition [2, under experiments with exchangeable treatment assignment, the rank
score statistic in Definition [5is both effect increasing and distribution free. Consequently, from
Theorem [2} to test the null hypothesis Hy . in (13), it suffices to minimize the value of the test
statistic t(Z,Yz,(0)) over § € Hy.. As we demonstrate below, this minimization has a closed-
form solution. Let m = Y_!' ; Z; be the number of treated units, and Z; be the set of indices of
treated units with the largest min(n — k, m) observed outcomes for 1 < k < n; when k = n, Z, is
an empty set. We then define a column vector as follows:

oo, ifi€ 1,

€e = (Cike Coker- - Cuke) € R",  where i = (1<i<nm). (14)

¢, otherwise,

Theorem 3. Under a randomized experiment with exchangeable treatment assignment as in
Definition (1} for any rank score statistic ¢(-,-) in Definition 5} any 1 < k < n and any constant
c €R,

Pzie = sup pzs = Go { inf t(Z, Yzlg(O))} =Go{tH(Z,Y —Zo&,)} (15)
56Hk,c 567‘[1(,5

is a valid p-value for testing the null hypothesis Hy . in (13), where Gg and & are defined in (11)
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and (14), respectively. Specifically, under Hy, Pr(pzx. < «) < a for any a € [0,1].

From Theorem [3, we are able to test whether any quantile of the individual treatment effects
is bounded above by any constant. When k = #n, the null hypothesis H, . in reduces to Hq
in (7), the vector &, reduces to c1, the p-value pz . in reduces to pz1 in (@), and Theorem
reduces to a special case of Theorem

In Theorem 3| intuitively, when testing null hypothesis Hi. of 7;) < ¢, we allow the 7(;)’s
with j > k to be arbitrarily large. Moreover, we assign these infinity values to the treated units
with largest outcomes to minimize the value of the test statistic, or equivalently to maximize the
randomization p-value. As a result, the calculation of pz . in (15) involves ranking vectors with
infinite elements. In practice, we can replace those infinite elements of & . by any constant larger
than the difference between the maximum treated observed outcome and the minimum control
observed outcome, and the value of pz . will remain the same. For simplicity, we use infinity,
and view two negative infinite elements as equal in ranking. This is also compatible with the R

software.

Remark 2. The ranking aspect of rank statistics plays an important role in making the test statistic
distribution free and thus eases the computation. From Theorem [3| and the discussion before,
the rank statistic also has the advantage that it is robust to extreme outcome values. Specifically,
although we allow some individual treatment effects to be infinity when maximizing the p-value
over & € Hy ., the rank statistic is still able to provide significant p-values against the null; see,
e.g., the simulation in Section |7.2|and the application in Section

5.3. Confidence intervals for quantiles of individual treatment effects

Similar to Corollary (1, we are now able to construct confidence sets for quantiles of the individ-
ual treatment effects based on Theorem (3l Moreover, the p-value pz . in enjoys a certain
monotonicity property that helps simplify the confidence sets. We summarize the results in the

following theorem.

Theorem 4. Under a randomized experiment with exchangeable treatment assignment as in
Definition [1} for any rank score statistic in Definition [5| any 1 < k < n and any a« € (0,1), (a) for
any fixed z and k, p ., defined as in (15), is increasing in ¢; (b) a 1 — a confidence set for 7,
is {c : pz . > a,c € R}, which must have the form of (¢, o) or [¢,) with ¢ = inf{c: pz). >
w,c € R}.

In the special case of k = n, Theorem [4] is directly implied by Theorem [1| and Corollary
However, Theorem E] generalizes the previous results for only the maximum individual effect
to all quantiles of the individual effects. The intervals from Theorem |4 also give a sense of the
sizes of effects across all units, and help understand the effect heterogeneity. For a specific k, the
interval for T(x) states where the largest n — k + 1 individual effects lie with certain confidence,

and it can cover all individual effects under assumptions weaker than constant effects: if the
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smallest k individual treatment effects are homogeneous, then the interval for 7 covers all the
individual treatment effects.

Importantly, the inference in Theorem ] on quantiles of individual effects can sometimes be
more appropriate than Neyman| (1923)’s inference on the average treatment effect. Specifically,
when the outcomes have heavy tails and outliers, the average effect may be sensitive to these out-
liers, and the finite population asymptotic approximation (Li and Ding/|2017) may work poorly.
However, the quantiles are more robust to outliers than the average. Moreover, the inference in
Theorem {4 is exactly valid in finite samples and does not require any large-sample approxima-
tion. See Section |7.3|for a simulation study:.

Remark 3. When k < n —m, Z; in contains the indices of all treated units, whose treatment
effects are all hypothesized to be arbitrarily large. The resulting confidence interval for 7 is
usually the uninformative (—oo, 00). Therefore, m, the size of the treatment group, can affect the
performance of the method in Theorems [3|and |4, Moreover, generally larger m can lead to more
quantiles of effects with informative confidence intervals. This asymmetric role of the treatment
and control group sizes comes from the fact that the randomization p-value pz s uses only the
imputed control potential outcomes. When the treatment group size is expected to be small, we
may want to use randomization p-value that uses the imputed treatment potential outcomes. As
discussed in Remark [1} this can be achieved by switching the labels for treatment and control
and changing the signs of the outcomes.

5.4. Inference for the number of units with effects larger than a threshold

We now consider an equivalent form of the null hypothesis Hy . in (13), which relates to the
proportion of units with effects larger than a certain threshold. Because such a quantity can
often be of interest in practice, we give a detailed discussion on its statistical inference below.

For any constant ¢ € R, define

n

n(c) =Y 1(t >c) (16)

i=1

as the number of units whose treatment effects are larger than c. We can verify that, for any
1 <k<nandc€R, 7y < cifand only if n(c) < n — k. Therefore, the null hypothesis Hy in
has the following equivalent forms:

Hye: Ty S c =T € Hye <= n(c) <n—k, (1<k<mnceR). (17)

Theorem [3{immediately implies that we are able to test null hypotheses about the number of
units with effects larger than any threshold, as shown in the following theorem. For descriptive
convenience, we define p, . = 1 for any z and c, due to the fact that Hy is true by definition.

Corollary 2. Under a randomized experiment with exchangeable treatment assignment as in
Definition 1} for any rank score statistic in Definition |5, (a) the p-value pz . in (15) is valid for
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testing the null hypothesis Hy . as given in and forany 1 <k <n and c € R; (b) for any
fixed z and ¢, p, k., defined as in (15), is decreasing in k; (c) a 1 — a confidence interval for n(c)
in , i.e, the number of units with effects larger than c, is {n—k: Pzic >« 0<k< n}, which
must have the form of {j:n —k <j < n} withk =sup{k: pzr. > a,0 <k < n}.

From Theorem f] and Corollary 2} we can know that, by construction, the 1 — « lower confi-
dence limit of n(c) is equivalently the number of quantiles of individual effects 7)’s whose 1 — a
confidence intervals do not cover c.

Theorem [4 and Corollary P] provide confidence intervals for quantiles of individual effects
T(k)'s as well as number (or equivalently proportion) of units with effects larger than any thresh-
old. However, both theorems do not provide point estimation for these quantities. Indeed, these
quantities are generally not identifiable due to no joint observation of the treatment and control
potential outcomes for any unit. Consequently, consistent estimators for them generally do not
exist. Recently, for binary or ordinal outcomes, Lu et al|(2018) and |Huang et al.| (2019) studied
sharp bounds and constructed confidence intervals for the proportions of units with positive ef-

fects, i.e, n(0)/n. Importantly, our confidence intervals in Corollary 2] work for general outcomes.

5.5. Simultaneous inference for quantiles 7(;)’s and numbers n(c)’s

From Theorem [4 we are able to construct 1 — a confidence intervals for all quantiles of individ-
ual treatment effects 7(y)’s. Similarly, from Corollary @ we are able to construct 1 — a confidence
intervals for the numbers 7(c)’s of units with effects larger than the thresholds c’s. As demon-
strated shortly, these confidence intervals will cover their corresponding truth simultaneously
with probability at least 1 — «, in the sense that there is no need for any correction due to multi-
ple analyses.

Recall that the set Hy . introduced in Section 5.2 has the following equivalent forms:

’Hk,cz{éelR”:(S(k)gc}:{éeﬂ{”:gﬂ(&>c)gn—k}CIR”, (18)

in parallel with the equivalence relationship in (I7). Using (18), we can equivalently represent
the confidence intervals for the quantiles 7(;)’s and the numbers 71(c)’s as confidence sets for the
treatment effect vector 7. Specifically, for any 1 < k < n, the 1 — « confidence interval for ) in
Theorem {4 has the following equivalent form as a 1 — a confidence set for 7:

Ty €E{c:pzic >0, cER} =T € ﬂ ’H,E/C, (19)

CPpzicsa

and for any ¢ € R, the 1 — « confidence interval for n(c) in Corollary [2| has the following equiva-

lent form:

nc)e{n—k:pzre>a,0<k<n}<=re [) %,E/C. (20)

k:pZ,k,CS(X
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Therefore, the combination of all the confidence intervals for the T(k)’s can be viewed as a confi-
dence set for all the individual treatment effects 7, which is the intersection of the sets in over
1 < k < n. Similarly, the combination of all the confidence intervals for the n(c)’s can be viewed
as a confidence set for 7, which is the intersection of the sets in (20) over all ¢ € R. As shown in
the following theorem, these two confidence sets for T are the same, and more importantly, they
are indeed confidence sets with at least 1 — « coverage probability.

Theorem 5. Under a randomized experiment with exchangeable treatment assignment as in
Definition |1 and using the p-value pz . in with any rank score statistic (-, -) in Definition
for any a« € (0,1), the intersection of 1 — & confidence intervals for all T(k)'s, viewed as a
confidence set for the individual treatment effect vector 7, is the same as that for all n(c)’s. In
particular, it has the following equivalent forms:

n

N N He=N N M= ) H

k=lcpzy.<« cERk:pz j <« ke pz <o

Moreover, it has at least 1 — a probability to cover the true individual treatment effects 7, i.e.,

Pr (T e N H,E,C> >1—a.

k/C:pZ,k,c <a

From Theorem [5, in practice, we can simultaneously construct confidence intervals for all
quantiles of individual effects, or equivalently numbers of units with effects larger than any
threshold. Moreover, these confidence intervals can be conveniently visualized, as illustrated
in Section [I.2) using Figure [Il Note that the confidence interval for the maximum individual
effect is the same as that under usual randomization inference with additive treatment effects
assumption. By the simultaneous validity in Theorem 5, we can get confidence intervals on all
quantiles of individual effects as free lunches, because these additional intervals will not reduce
our confidence levels.

In principle, we can construct confidence sets for the n-dimensional individual effect vector =
by inverting tests for all sharp null hypotheses. In general, however, testing arbitrary sharp null
hypotheses is computationally infeasible, and it does not provide informative inferences because
the parameter space is typically too unwieldy (with n units, the space of possible effects is n-
dimensional). As noted by Rosenbaum| (2010b), such a confidence set would not be intelligible,
since it would be a subset of an n-dimensional space. Some special forms of outcomes or test
statistics can lead to efficient computation and intuitive confidence sets. For example, Rosenbaum
(2001) used carefully designed test statistics involving the attributable effects, and |[Rigdon and
Hudgens|(2015) considered binary outcomes. A key property utilized by these approaches is that
many sharp null hypotheses are equally likely in the sense of producing the same randomization
p-value, which not only avoids enumeration over all possible values of 7 but also provides a
convenient form for the resulting confidence sets. By contrast, our confidence sets constructed
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in Theorem 5| works for general outcomes and relies mainly on the valid p-value for testing
null hypotheses about quantiles of individual effects, which involves efficient optimization of
randomization p-value in Theorem (3l Moreover, as illustrated in Section Theorem |5 provides
nice confidence sets in IR” that are easy to understand, interpret and visualize.

In fact, our confidence set in Theorem 5 essentially provides a confidence band for the quan-
tile (or equivalently distribution) function of the individual treatment effects. Relatedly, Lei and
Candes| (2021) constructed prediction intervals for the (random) individual treatment effect, as-
suming random sampling of units from some superpopulation. One main difference is that we
focus on the fixed population distribution of individual effects, while they focus on a random

draw from the superpopulation distribution of individual effects.

6. Extension: two-sided alternatives and effect range

In the previous discussion, we mainly focused on one-sided testing for the treatment effect T,
where the alternative hypotheses favor larger treatment effects. In fact, these results immediately
imply that we are able to test the other side for 7, where the alternative hypotheses favor smaller
treatment effects. We can achieve this simply by multiplying the outcomes by —1 or by switching
the labels for treatment and control. By Bonferroni correction, we can also construct confidence
intervals for all quantiles of individual effects using both sides of alternatives.

It is also possible to combine the confidence intervals for the maximum and minimum indi-
vidual effects into a single confidence statement about the range of treatment effects. Suppose

fU

L isa 1 — a/2 lower confidence limit for the maximum individual effect Tmax, and T4 is a
max min

1 — /2 upper confidence limit for the minimum individual effect Tmin. Using Bonferroni cor-
rection, we are 1 — a confident that the effect range Tmax — Tmin i at least ffﬁax — frlrfin, based on
which we are able to test whether the treatment effect is constant, an issue discussed in detail in
Ding et al.| (2016). For completeness, we summarize the results in the following theorem.

] is

Theorem 6. Suppose that [flflax,oo) is a 1 —a/2 confidence interval for Tmax, and (—oo, fanin
AU

a 1 —a/2 confidence interval for Tyin. Then (a) [max{tk., — T i

0},00) is a 1 — & confidence
interval for the effect range Tmax — Tmin; (b) for the null hypothesis of constant treatment effect,
i.e., He1 holds for some ¢ € R, rejecting the null if and only if t%, — T4 > 0 leads to a valid test

at significance level a.

7. Simulation studies

7.1. A simulation study for inferring the maximum individual effect

We first conduct a simulation study to investigate the power of randomization tests with different
test statistics for detecting positive maximum individual treatment effect Tmax, including the

settings where the average treatment effect is close to zero or even negative. In particular, we
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investigate difference-in-means, Wilcoxon rank sum and Stephenson rank sum as test statistics in
a completely randomized experiment. Using Propositions [1|and 2| we know that the difference-
in-means statistic is differential increasing, and the Wilcoxon rank sum and Stephenson rank sum
statistics are both effect increasing and distribution free under the CRE. Therefore, from Theorem
the randomization p-values pz s with these test statistics are all valid for testing the bounded
null Hgs. In the following, we will investigate the power of various test statistics averaging over
randomly generated potential outcomes.

We generate the potential outcomes as i.i.d. (Y;(0), 7;) pairs from the following model and

randomize half of the units to treatment group and the remaining to control group:

(Yi(o)> Y <<0> ’ ( 1 P‘Z)) . YD) =Yi(0) + 7, (21)
T T pw  w

where 71y characterizes the magnitude of the average treatment effect, p reflects the correlation
between the individual treatment effect and the control potential outcome, and w characterizes
the variability of the individual treatment effect. If p takes a positive value, then units with larger
control potential outcomes tend to have larger individual treatment effects.

We test the bounded null Hg that all individual treatment effects are non-positive (or equiv-
alently Tmax < 0) based on the randomization p-values pzo. Figures [2| shows the power of
the test using different test statistics with sample size n = 120 and significance level 0.1, under
different parameter values of (7, w,p). The columns correspond to different average treatment
effects ranging from quite negative (7o = —1), to 0, to quite positive (tp = 1). The top row has
less variation in individual treatment impacts (w = 0.5), and the bottom row has more variation
(w=1).

We first see that the performance of the difference-in-means and Wilcoxon rank sum (equiv-
alent to Stephenson rank sum with s = 2 under the CRE) statistics are very similar. When the
average treatment effect is non-positive, both of them have almost no power to detect positive
maximum effect. However, when s increases the Stephenson rank sum statistic is able to detect
the presence of positive maximum effects, even when the average treatment effect is non-positive
(see bottom-left).

The choice of s for the Stephenson rank sum statistic is a researcher choice. From Section
as the value of s increases, the Stephenson rank places greater weights on larger outcomes,
making the test statistic more sensitive to larger outcome. Therefore, intuitively, the “optimal”
choice of s will depend on the right tails of the distributions of treatment and control potential
outcomes. First, from Figures a), (b), (d) and (e), when the average treatment effect is non-
positive in expectation and the individual effects are not very negatively correlated with the
control potential outcomes (i.e., p is not very small), the power of the Stephenson rank sum
test generally increases with s. This is intuitive, since in this case the treated group will tend
to have larger outcomes than the control group. Second, from Figures [2(c) and (f), when the

average treatment effect is positive, the power of the Stephenson rank test can decrease with
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Figure 2: Power of randomization tests using pzo with different test statistics for the null hy-
pothesis H g or equivalently Tmax < 0 at significance level equals 0.1. The potential outcomes
are generated from with sample size n = 120 and different values of (1, w, p).
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s, especially for small or negative p. This is also intuitive, since in this case the control group
is more likely to have larger outcomes, which will reduce the observed Stephenson rank sum
statistic, and thus reduce power. Overall, we suggest a moderately large s for randomization
tests to infer maximum treatment effects. As a side note, Conover and Salsburg| (1988) examined
the asymptotic relative efficiency of a closely related class of test statistics, and found that when
only a small fraction of treated respond, the optimal subset size s is between 5 and 6.

In sum, although the Wilcoxon rank sum statistic is commonly used in practice and has
greatest relative power when treatment effects are close to constant, the Stephenson rank sum
statistic can be preferred due to its sensitivity to extreme treatment effects, which can lead to
tighter confidence intervals for the maximum effect when the maximum differs greatly from the
mean or median. It is even possible for a Stephenson rank sum test to reject the bounded null H¢q
for positive values of ¢ when the average treatment effect estimate is negative, if some individual
treatment effects are sufficiently positive. Thus, when treatment effects are heterogeneous, the
behavior of the Stephenson rank sum test can differ markedly from the Wilcoxon rank sum or
difference-in-means, while, like them, still providing a valid test for the bounded null hypothesis.
This also means that it can have greater power when using permutation testing in the classic sense

of testing whether there is any violation of the sharp null of no treatment effects whatsoever.

7.2. A simulation study for inferring quantiles of individual effects

We next conduct a simulation study to investigate the power of different rank score statistics for
detecting positive quantiles of individual treatment effects. We generate the potential outcomes
and treatment assignment in the same way as that in Section and focus on the inference of
the number of units with effects larger than zero, i.e, n(0) as defined in (16). Recall that the lower
confidence limit of n(0) is equivalently the number of 7()’s whose confidence intervals do not
cover zero.

Figure 3 shows the average lower bounds of the 90% confidence intervals for n(0) using the
Stephenson rank sum statistics with parameter s ranging from 2 to 60, where s = 2 corresponds
to the Wilcoxon rank sum statistic. From Figures[3(a), (b), (d) and (e), when the average treatment
effect is less than or equal to zero, the Wilcoxon rank sum statistic has almost no power to provide
informative confidence intervals for the number of units with positive effects. However, the
Stephenson rank sum statistics are able to detect significant amount of positive treatment effects,
where larger s tends to give larger lower confidence limits. From Figures [3(c) and (f), when
the average treatment effect is positive, the power of the Stephenson rank sum statistic becomes
non-monotone in s. In particular, very large value of s can lead to deteriorated confidence limits
for n(0), especially when the individual treatment effect is negatively correlated with the control
potential outcome. The intuition is similar to that discussed in Section the control group is
likely to have larger outcomes and the Stephenson rank with large s places greater weights on
these larger outcomes, making the test less powerful to detect positive individual effects.

Different Stephenson rank statistics can be preferred for different estimands of interest, even
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Figure 3: Average lower limits of 90% confidence intervals for the number of units with positive

effects n(0). The potential outcomes are generated from with sample size n = 120 and
different values of (1, w, p).

under the same data generating process. For example, Figure 4| shows the power of various
Stephenson rank statistics for testing whether each quantile of individual effect is bounded by
zero, i.e., Hy : T(k) < 0over all 1 <k < n, under the data generating model with n = 120 and
(t0,w, p) equal to (1,1, —0.9). (We omit those values of k for which all tests under consideration
have zero power.) From Figure [, we can see that s = 2 is preferred for larger quantiles of
individual effects, while s = 4 is preferred for smaller quantiles.

Selecting s is a decision the researcher has to make when planning their data analysis. To
aid with this, we provide functions in our developed package that, under a user-specified data
generating model, compare the performance of various Stephenson rank sum statistics in terms
of either power for testing the null hypotheses for given quantiles of individual effects or the
average magnitude of confidence limits for the number of units with effects passing any given

threshold. Users can then specify a range of possible distributions of control-side potential out-
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Figure 4: Power of various Stephenson rank statistics for testing the null hypothesis of Hy :
Ty < 0 over all k, under model with n = 120 and (1, w, p) equal to (1,1, —0.9).

comes, treatment impact models, and potential correlations of the two, along with their primary
estimand of interest (such as 7 for some k or n(c) for some c), and compare the performances
of different s values for these hypothetical scenarios at a given sample size n. They would then
select s based on which value generally had superior performance for the targeted estimands
of interest across the explored scenarios. The distributions of outcomes and effects, and their
correlation, would be obtained from the empirical data and prior knowledge (such as from pilot
studies).

In our applications, we mainly consider the Stephenson rank sum statistic with s = 6 or
10, based on this process and the other simulations in this paper. Generally s = 6 appears a
reasonable starting point for a versatile choice in the absence of empirical information.

7.3. Heavy-tailed outcomes and individual effects

We next conduct a simulation with heavy-tailed outcomes and individual treatment effects. We
will demonstrate that, compared to inference on average treatment effects (e.g., Neyman |1923),
the proposed inference on quantiles does not require any large-sample approximation and can
be more robust to outliers. In particular, we consider the case of generally positive constant
individual effects with a few extreme negative outliers. In the supplement, we also consider
a scenario with heavy-tailed distributions of the potential outcomes under Fisher’s null of no
effect.

We simulate an experiment with 120 units, among which two thirds will be randomly as-
signed to treatment and the remaining to control. We assume the treatment increases a certain
risk factor by 2 for 95% of the units, and decreases it by 50 for the remaining 5% of units. We

simulate the control potential outcomes from the standard normal distribution. Once generated,
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all the potential outcomes are fixed. For the final sample, about 5% of the units receive large
benefit, but the remainder would incur a negative effect. The true average treatment effect is
negative, indicating an average benefit, even though the majority of units are harmed.

Figure[5(a) shows the histogram of the sampling distribution of the usual difference-in-means
estimator. Over all the simulated assignments, the difference-in-means estimator is negative
about 77% of the time, and its average is close to the true average effect —0.6. In general, the
difference in means estimator would indicate that the treatment is reducing overall risk level and
is apparently beneficial. However, such a conclusion would potentially be misleading, because
the treatment is harmful for most units.

Figure [5(b) shows the histogram of the 90% lower confidence limit of the number of units
with higher risk level under treatment than control (i.e., 7(0)), based on the Stephenson rank
statistic with s = 6. Over all simulated assignments, the lower confidence limit of #(0) has an
average value of 37.5 (about 31% of the units), and can sometimes reach 49 (about 41% of the
units). Our method reliably detects that the treatment harms a significant amount of units; such
a finding would signal to researchers that the treatment would need further careful investigation
despite an apparent average benefit.
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Figure 5: Simulation when individual treatment effects have extreme values or outliers. (a) shows
the histogram of the usual difference-in-means estimator. (b) shows the histogram of the 90%
lower confidence limit of the number of units with positive effects using Theorem 4]

8. Applications

8.1. Testing monotonicity of an instrumental variable

The assumption that the instrument has monotonic effects on the treatment, though conven-
tionally invoked for identification of instrumental variable (IV) estimates (Angrist et al. 1996),
is rarely evaluated in empirical applications. Recently, however, the issue of non-monotonicity
has received attention in the active literature on school-entry age, in which numerous studies
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cember and January, respectively (Black et al.|2011).

involve instruments based on laws regulating entry age (Aliprantis 2012} [Barua and Lang)[2016;
for an overview, see Fiorini and Stevens [2014). Typically, these laws select an arbitrary date of
birth before which children are allowed to enter school in given calendar year. If the cutoff date
is January 1, for example, most children born in December will be about 11 months younger
when they enter school than children born in January. Due to imperfect compliance with the
instrument, however, some fraction of December children may “redshirt” and start the following
school year, at which time they will be one month older than than January children who started
on time. Unless the December children who redshirt would also have redshirted had they been
born in January, monotonicity is violated. That is, the effect of December birth on school-entry
age is typically negative, but for a few children it is positive (an analogous logic holds for January
children who start early).

For a simple illustration of how randomization inference can be used to evaluate monotonic-
ity, we re-analyze data on 104,000 children born in December or January from Black et al.| (2011)’s
IV study of school-entry age, which have previously been analyzed from a sampling-based per-
spective by |Fiorini and Stevens (2014ﬂ The latter authors note that the cumulative distribution
functions of December- and January-born children in these data cross each other, suggesting a
violation of monotonicity. Figure[f|indicates this clearly. Most children started school at an older
age if they were born in January rather than December. Indeed, this first-stage relationship is
incredibly strong, with an average effect of —0.667 years and an F statistic of 106,256. This would
conventionally be considered persuasive evidence of a valid instrument. Note, however, that
at the tails of the distribution the relationship between month of birth and entry age reverses:

9Table 1 of Black et al.| (2011) cross-tabulates month of birth and school entry age (early/on-time/late) in terms of
proportions, and Table 3 there reports the total number of subjects born in January or December (the “discontinuity
subsample”): 104,023. Similar to|Fiorini and Stevens| (2014), we assume equal numbers of subjects born in January and
December, and round the total number of subjects to 104,000, to ensure integer number of subjects in each subgroup.
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January birthdays predominate among the youngest starters, and December does so among the
oldest.

Table 1: Randomization tests for the bounded null Hso, which is equivalent to the monotonic-
ity assumption. The intervals are 90% confidence intervals for the maximum individual effect,
constructed by inverting the corresponding randomization tests. Columns 2—4 show results from
randomization inference using different test statistics. The last column shows results from the
classical Student’s t-test.

Difference-in-means  Wilcoxon  Stephenson Student’s ¢-test

p-value 1 1 0 1
90% CI [—0.669, ) [-0.916,00)  [0.084,c0) [—0.670, 0)

If we designate December birth as the assigned-to-treatment condition and January birth as
control, then the monotonicity assumption is equivalent to the null hypothesis H<o: being born
in December did not cause any child to go to school at an older age than they would have if born
in January. We assume that birth month is as-if randomly assigned, and conduct randomization
inference for the effect of December birth on the school-entry age. We test the bounded null
H_ using the randomization p-value pz o with various test statistics satisfying the conditions in
Theorem a), including the difference-in-means, Wilcoxon rank sum and Stephenson rank sum
with s = 10. Table [I|lists the results from randomization tests using these three test statistics,
supplemented by the classical Student’s t-test. We emphasize that, although both the randomiza-
tion p-values and the corresponding intervals are numerically the same as that under the usual
constant treatment effect assumption, they are also valid p-values for the bounded null Ho and
valid confidence intervals for the maximum individual effect Ty, as demonstrated in Section
Because the difference-in-means estimator for the average effect is negative, from the simulation
results in Section it is not surprising that neither difference-in-means or Wilcoxon rank sum
give significant p-values. However, the Stephenson rank sum gives an almost zero p-value, strong
evidence of the existence of units violating the monotonicity assumption. Intuitively, the signifi-
cant p-value is driven by the Stephenson rank placing more weight on larger outcomes coupled
with 15% of December-born children having a school-entry age of 7.75, which is larger than the
maximum school-entry age 7.67 for the January-born children. This means the treatment group
has a large share of the most extreme observations. The corresponding 90% lower confidence
limit is 0.084 year, or equivalently about 1 month, suggesting some children would first enter
the school one-month older if born in December than in January. We can therefore confidently
conclude that being born in December increased school-entry age for at least some students, i.e.,
the IV monotonicity assumption is violated in this application.

We now apply Theorem [f| to study the effect range. Using the Stephenson rank sum statistic
with s = 10, the 95% upper confidence limit for the minimum effect of December birth is —0.917
years (—11 months) while the 95% lower confidence limit for the maximum effect is 0.083 years
(1 month). We are therefore 90% confident that the range of the effect of birth month on school-
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entry age is at least 1 year, indicating significant individual effect heterogeneity. This of course
is hardly surprising given Figure [6, which shows that despite the negative average effect of
December birth, the children with the oldest school-entry age were born in this month.

8.2. Evaluating the effectiveness of professional development

Heller et al. (2010) studied the effectiveness of professional development on elementary teachers,
classrooms and students using a randomized experiment conducted at eight national research
sites. A sample of fourth grade teachers were randomly assigned to treatment and control,
where treated teachers would participate in a professional development course encompassing
eight three-hour sessions focusing on the teaching of electric circuits. We are interested in the
effect of professional development on the teachers’ electric circuits content knowledge, as mea-
sured by the gain scores based on tests before and after the professional development courses.
The actual experiment was randomized within site and school, and the active treatment had three
versions with regard to additional activities for the development of pedagogical content knowl-
edge. For simplicity and to illustrate our approach, we analyze it as a completely randomized
treatment-control experiment and exclude teachers with missing outcomeﬂ resulting in 164
treated teachers and 69 control teachers. Figure [8(a) shows the histograms of the observed gain
scores in the treatment and control groups. The treated teachers tend to have larger gain scores,
and the corresponding histogram is close to a positive shift of that for the control teachers, with
a magnitude of 15 to 20. Therefore, intuitively, we expect our approach to infer a significant pro-
portion of teachers with positive effects as there is little sign of treatment effect heterogeneity and
a large share of treated teachers’ outcomes are larger than nearly all control teacher outcomes.

Before proceeding with our analysis, we need to select the tuning parameter s for our Stephen-
son statistic. We do this via a power simulation, generating a series of datasets with an empirical
control-side distribution bootstrapped from the control units in our data, the same estimated
average treatment effect, different hypothesized distributions of treatment effects (constant, nor-
mal, exponential) with different levels of impact variation, and different correlations of treatment
impact with baseline outcome. We calibrate an assumed treatment variation by assuming zero
correlation and comparing the variances of the treated and control groups, but explore other
values as well. We additionally explore both positive and negative correlations as a sensitivity
check. For each dataset we calculate simultaneous confidence intervals for the largest 100 in-
dividual effects, using the method described in Section [5. For each of these top 100, we then
calculate the median lower bound of their confidence intervals across simulation runs along with
power (the probability of the CI excluding zero).

Figure [7] shows the median lower bounds as a function of s averaged over three different
groups of quantiles (the top 10, next 20, and next 70). We generally see high informativeness of
the intervals for low s. Averaged across scenarios, we find optimal s of 4, 5, and 6 for the high,

middle, and low groups. Our supplementary replication file gives further details of the above

10Since the outcomes of all control teachers are missing in one of the eight sites, we exclude that site in our analysis.
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procedure and aggregation.

We also examine the performance on the number of significant units by examining the median
of the lower confidence bound across the simulation runs for the different scenarios; here we find
that s = 5 generally gives the largest number of significant units, unless the pattern of impacts is
exponential, in which case a larger s = 6 or s = 8 is warranted.

Given the above, especially considering the constant shift suggesting possible constant treat-
ment impact, we select s = 5 for our analysis.
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Figure 7: Median CI lower bounds over different groups of quantiles and simulation scenarios as
a function of s for an exploratory simulation calibrated to the teacher professional development
data. From left to right we have top 13 quantiles, next 20, and next 30. Rows correspond to
different correlations of Y;(0) and 7;. Black dots give empirical averages across all scenarios
considered.

With our selected s we then analyze the original data, calculating confidence intervals for
all quantiles. Figure b) shows the 90% lower confidence limits for all the 7()’s using the
Stephenson rank sum statistic with s = 5 that have finite lower limits (the lower confidence limits
for 7(;)’s with k < 122 are all negative infinity). From Figure b), the lower confidence limits of
T(k)'s with 149 < k < 233 are all larger than zero, implying that a 90% confidence interval for
n(0) is [85,233]. Equivalently, we are 90% confident that at least 85/233 = 36.5% units would
benefit from the professional development courses. Similarly, a 90% confidence interval for n(6)
is [68,233]. That is, we are 90% confident that at least 68/233 = 29.2% teachers would have
gained six more points in the test if they had participated in the professional development.

To show the benefit of using Stephenson ranks, we also plot the 90% lower confidence limits
for all quantiles 7(;)’s using the usual Wilcoxon rank sum statistic, as shown in Figure ). We
have noninformative limits for all T(x)'s with k < 159, rather than 122, and the lower confidence
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Figure 8: Histograms of observed gain scores and 90% confidence intervals for quantiles of
individual effects. (a) shows the histograms of the observed gain scores in treatment (grey) and
control (white) groups, respectively. (b) and (c) shows the 90% lower confidence limits for all
quantiles of individual effects using the Stephenson rank statistics with s equal to 10 and 2,
respectively. The uninformative confidence intervals of (—oo, c0) for individual effects at lower
ranks are omitted from (b) and (c).

limits for n(0) and n(6) are respectively 59 and 48, corresponding to 25.3% and 20.6% of the
teachers. Obviously, the inference results using Stephenson ranks are far more informative.
Finally, we apply Theorem [f] to study the effect range. The confidence intervals for the
minimum and maximum effects overlap substantially, yielding a completely uninformative con-
fidence interval for the effect range and precluding rejection of the hypothesis of a constant
effect. This is consistent with the graphical evidence in Figure [§(a), where the distribution of the

observed outcome for treated units is close to a shift of that for control units.

9. Conclusion and Discussion

The rise of nonparametric causal inference in the Neyman-Rubin tradition has been one of the
most important statistical developments in the social and biomedical sciences. This perspective,
with its focus on the average effects and its acceptance of effect heterogeneity as the rule rather
than the exception, has rightly prompted greater skepticism of statistical methods that rely on
parametric assumptions. It is then perhaps no surprise that RI, which has traditionally been
motivated in terms of shift hypotheses or other highly structured models of treatment effects (e.g.,
Lehmann|/(1963; Rosenbaum|2002), has also been regarded with skepticism, despite its freedom
from other distributional assumptions.

We have argued that the view of RI prevalent among statisticians and applied researchers —
that RI is useful only for assessing the typically uninteresting and implausible sharp hypothesis
that treatment had no effect at all—is too limited. We have proved that randomization tests can

be valid under a more general bounded null, that this fact can be exploited to derive confidence
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intervals for the maximum or minimum effect, and that many familiar test statistics can lead
to tests with this property. We then extended the RI for the maximum (or minimum) effect to
general quantiles of the individual effects, which in turn provides confidence intervals for the
number (or equivalently proportion) of units with effects larger than (or smaller than) any thresh-
old. Moreover, the confidence intervals for all quantiles of individual effects are simultaneously
valid.

We have also highlighted the value of less familiar statistics such as the Stephenson rank sum,
which is sensitive to the extremes of the treatment effect distribution, and explained the norma-
tive and theoretical relevance to infer quantiles of individual effects. There are many interesting
directions worth exploring in the future. First, as shown in Section[7.2} different Stephenson rank
sum statistics can be preferred under different data generating models and for different causal es-
timands. Thus, it will be preferable to choose the test statistics adaptively based on the observed
data. Second, |Ghosh et al| (2021) recently studied asymptotic properties of randomization test
under sharp null hypotheses with constant individual effects. It will be interesting to extend their
theory to bounded null hypotheses and quantiles of individual effects. Third, in this paper we
focus on inferring quantiles of effects in randomized experiments with exchangeable treatment
assignments. It is our future work to extend it to more general randomized experiments, such as
stratified /blocked randomized experiments.

In sum, we have offered a novel perspective on RI that we hope tempers the skepticism
that many applied scientists hold towards this otherwise-appealing mode of statistical inference,
and have developed a novel method to infer all individual effects simultaneously, in particular
confidence intervals for quantiles of the effects and proportions of units with effects larger (or
smaller) than any threshold. RI is by no means a cure-all; nor is it a substitute for average
treatment effect estimation when that is the goal of the analysis. But in many cases, particularly
when sample size is small or outcomes are heavy-tailed, they are the most reliable form of
statistical inference. Moreover, even when this is not the case, they can provide fruitful results
that may help understand the pattern of treatment effects across the whole population. For these
reasons, RI deserves a secure place in the quantitative applied scientists’ toolbox.

Supplementary Materials

The supplementary materials contain two files. The first file includes (i) a discussion on the
validity of randomization tests using test statistics of form #(Z,Y") for bounded null hypothe-
ses, (ii) the proofs of all theorems, corollaries and propositions, (iii) additional simulation stud-
ies, and (iv) an application for evaluating the effects of six-month nutrition therapy using a
randomized controlled trial. The second file includes (i) installation of the developed R pack-
age, (ii) replication for the three data analyses in the paper and the supplementary materials,
and (iii) illustration for the R functions to compare the power of different Stephenson rank
sum statistice. The R package RIQITE implementing the proposed methods is available at
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https://github.com/li-xinran/RIQITE.
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