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Nonresponse and other sources of bias are endemic features
of public opinion surveys. Consequently, even for probability 
samples, basing inferences on the sampling design alone
is rarely the best option. Both the bias and the variance of 
design-based estimators can be reduced through the use of 
adjustment weights, which incorporate auxiliary information 
on the composition of the target population. We elaborate a
general workflow of weighting-based inference, decomposing 
it into two main tasks. The first is the estimation of population 
targets from one or more sources of auxiliary information. The 
second is the construction of weights that calibrate the survey
sample to the population targets. We emphasize that these
tasks are predicated on models of the measurement, sampling, 
and nonresponse process whose assumptions cannot be fully 
tested. After describing this workflow in abstract terms, we 
then describe in detail how it can be applied to the analysis 
of historical and contemporary opinion polls. We also discuss 
extensions of the basic workflow, particularly inference for 
causal quantities and multilevel regression and poststratification.
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Introduction
This Element provides a concise overview of the use of adjustment weights to
analyze unrepresentative survey samples. Such unrepresentativeness can arise
from the process by which subjects are sampled from the population (e.g., if
nonprobability sampling is used) or in the process by which survey responses
are obtained from sampled subjects (e.g., if responses are nonrandomly miss-
ing). If related to outcome variables of interest, nonrandom sampling and/or
nonresponse can bias estimators of population quantities. Almost all surveys,
whether historical or contemporary, are at least somewhat vulnerable to such
biases.
Adjustment weighting is a simple yet flexiblemethod of addressing sampling

and nonresponse bias. It entails assigning each sampled unit an adjustment
weight, which is then incorporated into estimators. An advantage of weight-
ing over alternative methods of adjustment, such as multiple imputation, is that
it does not require an explicit parametric model for each outcome variable.
Rather, adjustment weighting typically involves simple modifications of non-
parametric design-based estimators for probability samples, which weight units
by the inverse of their probability of being selected under the sampling design.
This Element focuses on a framework for adjustment weighting known as cal-
ibration, which subsumes such commonly used methods as poststratification
and raking. In this framework, a sample is “calibrated” to a set of population
targets derived from auxiliary information (e.g., census data). Calibration ame-
liorates nonresponse bias to the extent that the variables that define these targets
predict units’ response probabilities and outcome values.
A distinguishing feature of this work is that we give equal weight (no pun

intended) to two basic steps in the workflow of weighting-based survey infer-
ence: the estimation of population targets and the estimation of adjustment
weights. The first step (target estimation), though typically ignored by texts
on survey weighting, precedes the second step (weight estimation) temporally
and can exceed it in complexity and difficulty. Auxiliary information often
consists of partial, noisy, and internally inconsistent population estimates, and
deriving a single set of population targets from this information is often far from
straightforward. Like weight estimation, which requires good working models
of the nonresponse mechanism and of the outcome of interest, target estimation
implicitly depends on a measurement model relating the auxiliary information
to the true population distribution.
In explaining the workflow of weighting-based survey inference, we employ

a mix of theoretical discussion and empirical illustration. Section 1 sets the
scene by emphasizing the ubiquity of sampling and nonresponse bias and
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explaining the problems this poses for classical design-based inference. It then
describes in general terms how such biases can be ameliorated by incorporat-
ing auxiliary information into design-based estimators, and it outlines a general
workflow for doing so. Section 2 delves into the specifics of adjustment weight-
ing. It focuses on weight estimation, temporarily assuming that the auxiliary
information is free from measurement error. It shows how calibration sub-
sumes many commonly used weighting techniques and then discusses criteria
and procedures for the critical task of selecting population targets. Relaxing the
assumption of error-free auxiliary information, Section 3 turns to the typically
neglected task of estimating population distributions and deriving population
targets from them. Section 4 illustrates the tasks of calibration and target esti-
mation in detail, using an application to a survey conducted before the 2016 US
presidential election. Section 5 applies similar techniques to a more complex
historical application: quota-sampled public opinion polls conducted between
1936 and 1952. Section 6 discusses methodological extensions and concludes.
Key terms and abbreviations are defined in a glossary at the end of the Element.
To make it easier for readers to use the methods we describe, we provide

illustrative code implementing them in the open-source statistical softwareR (R
Core Team 2018). Each section ends with an appendix containing code snippets
related to the topics discussed therein. In addition, all of the code in this Element
can be accessed and run reproducibly on Code Ocean (https://codeocean
.com/). There is a separate “capsule” for each section, all of which have the
tag caughey-et-al-weighting-element. A direct link to each capsule can
be found in the Example Code subsection of the corresponding section.

1 The Problem of Unrepresentative Survey Samples
1.1 Survey Sampling: From Quotas to Probability and Back

Again
Opinion polling as we now know it originated in the mid-1930s with George
Gallup’s, Elmo Roper’s, and Archibald Crossley’s pioneering surveys of the
American public (Converse 1987, 87). Unlike straw polls such as those con-
ducted by Literary Digest magazine, which solicited survey responses from
telephone directories and other class-biased lists, Gallup and his fellow poll-
sters consciously constructed samples that were relatively small but observably
representative of the population of interest (in Gallup’s case, the US electorate).
They did so using the technique of quota sampling, in which interviewers
were sent to purposively selected locations and instructed to interview specified
proportions of subjects in distinct demographic categories (Berinsky 2006).

https://codeocean.com/
https://codeocean.com/
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The accuracy of quota sampling was validated when these pollsters correctly
predicted the outcome of the 1936 presidential election, a success which con-
trasted markedly with the failure of the much larger Literary Digest poll.
The latter’s poor performance was due to two compounding factors: the sam-
pling bias caused by its unrepresentative sampling frame and the nonresponse
bias caused by differential response rates, both of which skewed the Literary
Digest’s sample in a Republican direction (Squire 1988). By forcing survey
samples to match the target population in specified respects, quota sampling
substantially reduced the scope for such biases.
Barely a decade later, however, quota sampling experienced its own embar-

rassing failure when Gallup and other pollsters mispredicted the 1948 presi-
dential election.1 Partly in response to this debacle, US survey organizations
transitioned to a new procedure for selecting respondents: probability sam-
pling.2 Instead of constructing samples that match the target population in
observable respects, probability sampling entails selecting interview subjects
from the sampling frame at random according to known probabilities. By
the 1950s, most commercial pollsters had adopted probability sampling, as
had new academic survey organizations, such as the University of Michigan’s
Survey Research Center (SRC).
Because almost all surveys continued to rely on in-person interviews, early

probability samples were based on area sampling. By the 1970s, however,
many commercial polling organizations had transitioned to telephone samples
selected with random digit dialing (RDD). Though issues of coverage error
remained, probability sampling all but eliminated sampling bias in surveys.
Moreover, survey response rates remained high, ranging from about 50% for
the typical consumer telephone poll to more than 70% for academic surveys
such as the American National Election Studies (ANES) and 95% for the best
government surveys (Wiseman andMcDonald 1979; Luevano 1994; Dixon and
Tucker 2010, 597).
Since the 1980s, however, response rates for both in-person and telephone

surveys have fallen dramatically, in the United States as well as in other coun-
tries (Leeuw and de Heer 2002). The response rate for the SRC’s RDD-sampled

1 According to a postmortem of election polling in 1948, this prediction failure actually had less
to do with the deficiencies of quota sampling per se than with late opinion movement after the
last polls were conducted (Mosteller et al. 1949).

2 By the mid-1930s, Jerzy Neyman and other statisticians had laid the theoretical basis for prob-
ability sampling, and by the end of that decade area sampling methods were well established in
the US Census Bureau and other government agencies. The practical merits of probability ver-
sus purposive sampling, however, continued to be debated for at least another decade (Berinsky
2006, 501–502).
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Survey of Consumer Attitudes, for example, fell from about 70% in 1981 to just
above 50% in 2006 (Dixon and Tucker 2010, 597). Face-to-face ANES surveys
have followed a similar trajectory (Hillygus 2016). Declines among commer-
cial telephone surveys have been even more precipitous. Response rates for
Gallup surveys had dropped to 28% by 1997 and to 7% by 2017 (Marken 2018).
Contemporary response rates for probability-based internet panels, which were
developed in the 1990s, are if anything lower.
Given the theoretical potential for even a small amount of nonresponse to

bias design-based survey estimators (Cochran 1977, 363; but see Groves 2006),
these declines have seriously concerned pollsters and survey researchers. One
reaction has been to rely more heavily on statistical methods for addressing
nonresponse bias, including weighting (Brick and Montaquila 2009) and, less
commonly, multiple imputation (Peytchev 2012). A more radical response
has been to abandon probability sampling entirely and return to quota sam-
pling, particularly for opt-in online panels (Ansolabehere and Rivers 2013)
but also for telephone surveys (Moy 2015). Weighting, imputation, and quota
sampling all require auxiliary information on the characteristics of the target
population, which is available in increasing abundance (if not necessarily qual-
ity) from consumer databases, administrative records, and other sources. The
importance of such adjustments was dramatically illustrated in 2016, when the
undersampling of low-education white men contributed to election surveys’
underestimation of Donald Trump’s vote share in several key states (Kennedy
et al. 2018).
Survey sampling has thus in a sense come full circle. Early opinion polls

relied on quota sampling mainly because, in an age without widespread
telephone access, it was the most cost-effective means of constructing approx-
imately representative national samples. Despite lacking a firm basis in prob-
ability theory, quota samples seemed to work well enough in practice, at least
by the metric of predicting election outcomes. The embarrassment of the 1948
election, in conjunction with the development of area-sampling methods, per-
suaded most American pollsters to switch to probability sampling. The advent
of near-universal telephone access and development of RDD sampling, which
was both probability-based and inexpensive, inaugurated what might be con-
sidered the golden age of survey sampling; but, like all golden ages, it was
only temporary. By the twenty-first century, all but the highest-quality (and
most-expensive) surveys suffered from response rates so low as to call into
question the utility of solely design-based survey inference. Today, as in the
1930s, nearly all opinion surveys rely on purposive selection or adjustment
(e.g., weighting) of their samples to render them observably representative of
the population of interest.
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1.2 Survey Inference with Unrepresentative Samples
As the foregoing overview suggests, for a fairly brief period it was plausible
to draw population inferences from surveys based on their sampling design
alone. When feasible, design-based statistical inference is straightforward and
appealing, for it does not rely on hard-to-validate assumptions about the data-
generating process for the survey outcome of interest. Nor does design-based
inference require any auxiliary data beyond the sample itself (though incorpo-
rating auxiliary information can often increase estimators’ precision). Rather,
population means and other parameters can be consistently estimated based
solely on knowledge of each population unit’s sampling probability πi.

1.2.1 Design-Based Inference without Auxiliary Information

When the sampling model is known by design and all sampled individuals
provide valid responses, the “workflow” of inference – the sequence of steps
leading from population to sample to estimate – can proceed unproblematically
along the bottom of Figure 1.1, without recourse to data beyond that contained
in the sample itself. The circle in the lower left corner in this figure represents
a target population U of N units indexed by i. In this population, the outcome
of interest y and auxiliary variables xxx have the joint distribution fU (y, xxx), and
the target of inference is some parameter θy of fU (y, xxx). To draw inferences
about θy, we rely on a sample S of size nS , of which a subsetR of nR respon-
ders (the respondent set) provide nonmissing responses with joint distribution
gR(y, xxx).3 In a probability sample with full response, the sampling model that
generated the observed data is known by design, and thus parameter estimation
and inference can be based solely on that design.
In the case of a simple random sample (SRS), where units’ sampling proba-

bilities πi are equal and independent across units, the sample average ȳS =

n−1
S
∑

i∈S yi is an unbiased estimator of the population mean µy. For more
complex sampling designs in which the πi, though known, are unequal and
possibly correlated, unbiased estimation is provided by the Horvitz-Thompson
(HT) estimator,

µ̂HTy =

∑
i∈S diyi

E(
∑

i∈S di)
, (1.1)

3 In this Element we consider only unit nonresponse, ignoring the possibility that a sampled unit
might provide responses to some questions but not others (item nonresponse). For a useful
discussion of methods for addressing item nonresponse, see Särndal and Lundstrom (2005,
chap. 12).
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Population
fU (y, x)

Responses
gR(y,x)

Estimate
θ̂y

Weights
w̃

Auxiliary
Information
Ĭx1, . . . , ĬxM

Population
Targets

T̃x

Weight
Estimation

Parameter
Estimation

Sampling/Response
Model

Measurement
Model

Target
Estimation

Figure 1.1 The workflow of survey inference. Observed quantities are
enclosed in rectangles and unobserved in circles. If the sampling model is

fixed by design (i.e., the inclusion probabilities πi are known) and
nonresponse is absent (i.e., ρi = 1 ∀i), parameter estimation can proceed

based on inverse-probability weights di = 1/πi. In the face of
unrepresentative sampling and/or nonresponse, however, weights must be
calculated based on the population targets T̃xxx and on assumptions about xxx’s

relationships with ρ and y. The targets T̃xxx themselves must be estimated based
on auxiliary information Ĭxxx = {̆Ixxx1, . . . , ĬxxxM} and a measurement model

relating fU (xxx) and Ĭxxx.

where di = π−1
i is i’s inverse probability or design weight and E(

∑
i∈S di) is

the expected weighted sample size (Horvitz and Thompson 1952). Owing to
the HT estimator’s high variance, in practice it is often preferable to use the
ratio or Hájek estimator of the mean,

µ̂Hy =

∑
i∈S diyi∑
i∈S di

, (1.2)

which substitutes the realized weighted sample size for the expected (Hájek
1958). Given probability sampling and full response, the Hájek estimator is
consistent for µy and approximately unbiased,4 and its sampling variance is
generally substantially smaller than that of µ̂HTy (Miratrix et al. 2018, 279;
Aronow and Miller 2019, 228). Its approximate variance can be estimated as

v̂ar(µ̂Hy ) =

(∑
i∈S

di

)−2∑
i∈S

∑
j∈S

πij − πiπj
πijπiπj

(yi − µ̂Hy )(yj − µ̂Hy ) (1.3)

4 Lumley (2010, 85) calls the ratio estimator “approximately unbiased” because its bias is much
smaller than its standard error (proportional to 1/n rather than 1/

√
n).



Target Estimation and Adjustment Weighting 7

where πij is the probability that both units i and j are sampled (Miratrix et al.
2018, appendix C). (For R code implementing the Hájek ratio estimator, see
Listing 1.2.)
Alternatively, the sampling distribution of almost all common survey statis-

tics, including µ̂Hy , can be estimated via the bootstrap. A general procedure
for bootstrapping complex sampling designs is to repeat the following B times
(e.g., B = 999):

1. Take a with-replacement sample of size nS from S, respecting the origi-
nal sampling design (e.g., sampling each unit with probability proportional
to πi).

2. Using this bootstrap sample S(b), calculate the estimate θ̂(b)y .

The resulting collection of bootstrap estimates {θ̂(1)y , . . . , θ̂(B)} approximates
the sampling distribution of θ̂. The standard deviation of the bootstrap dis-
tribution provides a consistent estimate of the standard error of the sampling
distribution. Confidence intervals can also be estimated with the ⌊α/2 × B⌋th

and ⌈(1−α)/2×B⌉th largest values of the bootstrap distribution, where 1−α

is the level of the confidence interval (for the many variations and subtleties of
the bootstrap, see Davison and Hinkley 1997). The bootstrap is thus a valuable
alternative when analytical formulas for sampling distributions are unknown or
unreliable. (For R code implementing the bootstrap, see Listings 1.1 and 1.2.)
Unfortunately, most real-world surveys do not approximate the ideal con-

ditions required for design-based inference. Even high-quality probability-
sampled surveys, in which πi is known for each unit, usually do not obtain
valid responses from every sampled individual. In such cases, the respondent
set R is a proper subset of the sample S. Moreover, units’ ex ante probabil-
ity of responding if sampled (their response probability ρi) is typically both
unknown and heterogeneous across units. Under such conditions, the con-
sistency of design-based estimators is no longer guaranteed. In an SRS with
nonresponse, for example, the bias of the unweighted sample mean is

E(ȳ)− µy = Rρyσρσy/ρ̄, (1.4)

where Rρy is the population correlation between ρ and y, σρ and σy are the
population standard deviations of ρ and y, and ρ̄ is the population average
of ρ (Bethlehem, Cobben, and Schouten 2011, 249). The bias of the HT esti-
mator has a similar form that also depends on the association between ρ and
y (Bethlehem 1988). In short, unless the outcome of interest is independent
of population units’ probabilities of being sampled and responding, purely
design-based estimators will in general be biased and inconsistent.
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1.2.2 Adjustment Weighting to Address Sampling and Nonresponse Bias

The most common method for addressing bias due to unrepresentative sam-
pling and nonresponse is adjustment weighting, which includes common
techniques such as poststratification and raking as well as the more general
framework of calibration (Deville and Särndal 1992). Unlike design weights,
which can be derived from the sampling design before the survey has been
conducted, adjustment weights must be calculated afterwards based on the
data actually obtained. Adjustment weights are, however, analogous to design
weights in that they can be incorporated into estimators of population parame-
ters. The weighting estimator for the mean, for example, has the same form as
the Hájek estimator in (1.2) but with the adjustment weights w̃i substituted for
the design-based ones di:

µ̂Wy =

∑
i∈R w̃iyi∑
i∈R w̃i

. (1.5)

Unlike di, w̃i is a random quantity whose value must be calculated from
auxiliary data beyond that contained in the sample itself. Specifically, calcu-
lating w̃ requires population targets T̃xxx = {T̃xxx1, . . . , T̃xxxG} for certain auxiliary
variables xxx measured in the survey. Suppose, for example, that we wished to
weight an SRS of adults to match the proportion of men and women in the
population (a simple example of poststratification). In this case, two-category
gender would be the only auxiliary variable, and the population targets would
consist of estimates of the proportion of men and women in the population,
T̃xxx = (P̃men, P̃women), derived from auxiliary information Ĭxxx external to the
sample itself. Each male respondent would be assigned the weight

w̃i = P̃men
/
pmen, (1.6)

where pmen is the proportion male among respondents. Weights for women
would be defined analogously. Because each gender’s weight would be propor-
tional to its underrepresentation in the respondent set relative to the population,
this adjustment would ensure that the weighted respondent set matched the
gender breakdown in the population.
Weighting eliminates nonresponse bias if it renders the response probabil-

ity ρ and the outcome y totally uncorrelated, as is the case in an SRS with full
response. In principle, this condition can be satisfied if, conditional on the aux-
iliary variables xxx, survey responses are either (1) missing at random (MAR)
or (2) independent and identically distributed (IID). For example, in the case
of poststratification, bias is eliminated if either (1) ρ is constant within cells or



Target Estimation and Adjustment Weighting 9

(2) y is IID within cells. In practice, adjustment weighting is unlikely to exactly
satisfy either of these conditions, but substantial reductions in nonresponse bias
are nevertheless possible if xxx strongly predicts both ρ and y.
Because the beneficial effects of weighting can depend heavily on which

auxiliary variables are available and on the specific outcome of interest, applied
methodological texts typically recommend that auxiliary variables be selected
with great care (e.g., Särndal and Lundstrom 2005; Lumley 2010; Bethlehem,
Cobben, and Schouten 2011). Given that there may be multiple outcomes of
interest in a given survey, it can even be desirable to use different sets of weights
for different analyses of the same survey data. Few texts, however, provide
much concrete guidance on how exactly to select auxiliary variables. Perhaps
for this reason, the overwhelming majority of applied survey researchers seem
instead to rely on only a single set of weights – often ones provided by the
original creators of the dataset they are analyzing. Such reliance on a single
set of (design) weights may be reasonable when analyzing probability samples
with minimal nonresponse, but it is less tenable if units’ probability of being
sampled or of responding are not known ex ante.

1.2.3 Constructing Population Targets from Auxiliary Data

While the selection of auxiliary variables may be neglected, survey method-
ologists (not to mention practitioners) have given even less attention to the
construction of the population targets used to create the weights in the first
place.5 In poststratification, for example, it is almost universally assumed
that the cell population proportions P̃c are known exactly rather than esti-
mated. More generally, survey researchers generally presume that they possess
a direct measure of fU (xxx), the joint distribution of auxiliary variables in the
population. This presumption is frequently unjustified. Rather, the auxiliary
information Ĭxxx to which researchers have access often consists of M disparate,

5 We are not aware of any textbook on survey weighting that gives more than cursory attention
to target estimation, though Valliant, Dever, and Kreuter (2018) do offer a brief discussion.
The following quotation, from Gelman (2007, 155), while unusual for explicitly acknowledg-
ing that population targets must be estimated, nevertheless indicates the general neglect of this
problem:

In some cases the cell populations are unknown and must be estimated. For example,
[in] the Current Population Survey . . . the counts are too sparse to directly estimate
deep interactions (e.g., the proportionwho are white females, 30–45,married, with less
than a high school education, etc.) . . . For this paper, we shall ignore this difficulty
and treat the [cell counts] as known.

.
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noisy, and possibly inconsistent data sources, {̆Ixxx1, . . . , ĬxxxM}, from which esti-
mated population targets T̃xxx must be derived (Deville 2000; Caughey andWang
2019).
To illustrate, consider the relatively favorable scenario where a government

census has collected data on all possible auxiliary variables. In the United
States, privacy concerns preclude the release of the full individual-level census
files for many decades after the Census is conducted. Fortunately, individual-
level census data are available in the form of 1% or 5% microsamples, though
to avoid identifying individual respondents the microdata sometimes mask cer-
tain variables, such as urban residence (see, e.g., Ruggles et al. 2017). However,
the US Census Bureau often separately reports the aggregate distribution of
the masked variables, sometimes cross-classified with other demographic or
geographic factors such as race or state. The Census also conducts special sur-
veys, such as the Current Population Study (CPS), that contain more or less
accurate estimates of other variables, such as self-reported voter turnout. As a
final complication, these various data sources are typically available at irregu-
lar intervals – once per decade in the case of the full US Census, annually in
the case of the CPS, and sometimes in between in the case of aggregate data
such as urban residence.
Population estimates derived from such disparate sources of auxiliary infor-

mation are subject to several sources of error and other complications. The
first is simply random sampling error. The confidence interval for a percentage
estimated from the 60,000-observation CPS, for example, can have a width of
nearly a percentage point.6 Even the sampling variability of census microsam-
ples, which typically contain at least 1 million observations, can be nontrivial
for some purposes, such as estimation at the level of states or other subpopula-
tions. Only aggregate data that summarize the entire universe of cases, such as
census reports on urban population by state, are entirely free of sampling error.
A second, potentially more serious source of error stems from systematic

mismeasurement (or differential measurement) of auxiliary variables in the
population or the sample. Not only does self-reported turnout, for instance,
tend to be exaggerated by survey respondents but the magnitude of overreport-
ing varies systematically across population groups (Ansolabehere and Hersh
2012). It may therefore be problematic to treat the CPS as an unbiased esti-
mate of the voting population.7 To take an example we consider in more detail

6 For example, the width of the 95% confidence interval for an estimated percentage of 50% is√
0.5× (1− 0.5)/60,000× 1.96× 2 = 0.8%.

7 Although the CPS is a very high-quality survey, scholars have shown that its estimates of turnout
and other quantities still suffer from nontrivial bias and have devised weights to address this
problem (e.g., Hur and Achen 2013; McDonald 2019).
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in Section discussion of early public opinion polls, an auxiliary variable such
as phone ownership may be operationalized differently in the survey and the
auxiliary information (e.g., with respect to how telephones shared between two
residences are coded).
The sparse and irregular structure of auxiliary data sources presents further

challenges. The fact that the USCensus is conducted every ten years forces ana-
lysts to interpolate and/or extrapolate into noncensus years – whether implicitly
by treating targets as static or explicitly with a model of demographic change.
The irregular and inconsistent structure of different data sources presents even
greater difficulties. The fact that urban residence is not included in the cen-
sus microdata, for example, means that its joint distribution with other census
variables is not known – only its marginal distribution is (from aggregate US
Census reports). As a result, urban residence cannot be used to define cells for
poststratification, and either urban must be dropped as an auxiliary variable or
an alternative weighting method, such as raking, must be used.
In short, it is frequently impossible to transform auxiliary information

directly into population targets for use in weighting. This presents survey
researchers with difficult choices. In many cases, they must drop auxiliary
variables, abandon their preferred weighting method, and/or rely on model-
ing assumptions to construct an adequate estimate of the population targets T̃xxx.
Despite the importance of these choices, they have been given extremely lit-
tle attention. Indeed, methodological texts on survey weighting almost always
present population targets as given, hardly mentioning the possibility that tar-
gets might be error-prone or difficult to construct. By contrast, this text treats
the construction of population targets as an integral part of the weighting
process and accordingly discusses it at length in Section 3.

1.2.4 The Workflow of Weighting-Based Survey Inference

If a survey sample has been collected with nonprobability methods or is
afflicted with substantial nonresponse, inference can rarely be based on design
alone, and the statistical workflow cannot proceed directly along the bottom
of Figure 1.1. Rather, inference must be at least partly model-based, and the
workflow must involve several additional steps, represented by the “detour”
along the top of Figure 1.1.
Beginning in the lower-right corner of Figure 1.1 and working backward,

the first additional step is the incorporation of adjustment weights w̃ into esti-
mators of parameters of interest. Unlike the design weights d, which can be
derived from the sampling design alone, w̃ must be estimated using externally
derived population targets, T̃xxx. In simple cases, the relevant population targets
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(e.g., for poststratification by gender, the proportion of males and females in the
population) may be known essentially without error. More typically, however,
T̃xxx must itself be estimated from one or more sources of auxiliary information,
Ĭxxx = {̆Ixxx1, . . . , ĬxxxM}.
The workflow of weighting-based survey inference ultimately relies on two

broad sets of modeling assumptions, represented by the two arrows emanat-
ing from the Population node in Figure 1.1. The first, which also undergirds
design-based inference, is the “Sampling/Response Model,” a set of assump-
tions about the process by which units were sampled from the population and
their survey responses were obtained. Even design-based inference relies at
least implicitly on modeling assumptions that cannot fully be verified. “In prac-
tice,” notes Deville (1991, 176), “sampling for a probabilistic survey is a model
to which the reality of data collection attempts to conform.” The necessity of
such a model, however, is particularly obvious for nonprobability samples and
for surveys with substantial nonresponse. In either case, drawing population
inferences from the observed sample requires assumptions about how subjects
were sampled, why they decided to respond, and the observed variables that
explain the sampling and response processes.
The second set of modeling assumptions, which we label the “Measurement

Model,” concern the relationship between the auxiliary information Ĭxxx and the
population distribution fU (xxx). Rarely can Ĭxxx be taken as a direct measure of
fU (xxx). Even the simple case of census microdata, in which Ĭxxx may be a ran-
dom sample from fU (xxx), requires assumptions about the definition of the target
population, the measurement of auxiliary variables, and the process by which
individual census records were sampled. Amore elaborate measurement model
is required if the auxiliary information is measured at a different point in time
than the survey or if its data structure differs from that required for the weight-
ing targets (e.g., if Ĭxxx consists of separate marginal distributions rather than
the full joint distribution). Assumptions about all of these aspects of the mea-
surement process are required to translate the auxiliary information into usable
population targets.
Design-based inference is a limiting case in which sampling and response

probabilities are assumed to be known, thus obviating the need for auxil-
iary information. Another simple case is poststratification, which assumes that
nonresponse is MAR within strata whose population proportions are known.
In many cases, such simple sampling and measurement models are often
untenable: the sampling procedure is less than fully random, the nonresponse
mechanism is unknown, and the auxiliary information does not exactly match
the requirements of the weighting procedure. Inference must therefore pro-
ceed on the basis of more complicated and debatable assumptions. In such
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contexts, it is unrealistic to expect perfectly unbiased estimation of population
quantities. The solution, however, is not to retreat to design-based estimators
whose assumptions are clearly violated but to base inference on defensi-
ble sampling and measurement models, with the aim of reducing bias if not
eliminating it.

1.3 Example Code
The Code Ocean capsule for this section is published at https://doi.org/
10.24433/CO.9047395.v1.

Listing 1.1 Load data and create survey objects
1 ## Libraries
2 library(survey) # for analyzing complex surveys (see Lumley 2010)
3
4 # LOAD DATA AND CREATE SURVEY DESIGN OBJECTS
5
6 ## Read data
7 gss_df <- readRDS("data/GSS2016_use.rds") # survey data
8 acs_df <- readRDS("data/ACS2016_use.rds") # auxiliary information
9
10 ## Create design-weighted svydesign objects
11 gss_dwt <- svydesign(ids = ~vpsu, weights = ~design_wt, strata = ~vstrat,
12 data = gss_df, nest = TRUE)
13 acs_dwt <- svydesign(ids = ~1, weight = ~perwt, data = acs_df)

Listing 1.2 Inference for various population quantities
1 ## Proportion male
2 svymean(~male, design = gss_dwt) # males underrepresented in sample
3
4 ## Proportion black among males
5 svymean(~black, design = subset(gss_dwt, male == 1))
6 svyratio(~I(male*black), ~male, gss_dwt) # same because the mean is a ratio
7
8 ## Mean and quantiles of age (integer-valued)
9 svymean(~age_int, gss_dwt, na.rm = TRUE) # analytic SE
10 svymean(~age_int, gss_boot, na.rm = TRUE) # bootstrp SE
11 svyquantile(~age_int, gss_dwt, q = seq(.1, .9, .1), na.rm = TRUE) # no SE
12 svyquantile(~age_int, gss_boot, q = seq(.1, .9, .1), na.rm = TRUE) # bootstrp SE

2 Weight Estimation
This section discusses weight estimation: the process of deriving adjustment
weights w̃ from population targets T̃xxx for use in parameter estimation. For the
sake of this discussion, we temporarily assume that the auxiliary information
Ĭxxx consists of the joint distribution of the auxiliary variables xxx and is measured
without error. That is, we assume for now that Ĭxxx = fU (xxx). (This assumption
is relaxed in Section 3, which covers target estimation.) We first introduce two
well-known weighting methods, poststratification and raking, and then show

https://doi.org/10.24433/CO.9047395.v1
https://doi.org/10.24433/CO.9047395.v1
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how they can be subsumed into the more general framework of calibration esti-
mation.We then turn to the issue of choosing among weighting methods, which
in the calibration framework reduces to two decisions: the choice of population
targets T̃xxx and, much less important, the choice of how to measure the discrep-
ancy between the design weights d and the adjustment weights w̃. We stress
the importance of selecting population targets for variables that strongly predict
both nonresponse and the outcome of interest. We discuss methods for partially
automating the choice of population targets but caution that purely statistical
criteria for target selection should be balanced against substantive knowledge
and interpretability.

2.1 Common Weighting Methods
2.1.1 Poststratification

The twomost common forms of surveyweighting are poststratification and rak-
ing. Poststratification entails classifying the population into C mutually exclu-
sive and exhaustive strata (“cells”) and assigning responding units weights that
ensure that the weighted proportion of sampled units in every cell c matches
c’s proportion of the population. Typically, though not necessarily, cells are
defined by a complete cross-classification of multiple auxiliary variables (e.g.,
gender, race, and state of residence). The population targets required for post-
stratification are thus T̃xxx = {P̃1, . . . , P̃C}, where xxx denotes the auxiliary
variables that define the cells and P̃c denotes the target proportion for cell c.
The special case of poststratification weights for a simple random sample

(SRS) was illustrated in (1.6). In the general case where units differ in their
sampling probabilities, the formula is

w̃PS
i = (P̃c[i]/P̂Hc[i])× di, (2.1)

where c[i] denotes the cell c that contains i and P̂Hc[i] is the Hájek estimator
of cell c’s population proportion (see Listing 2.3).8 The weights in (2.1) force
the weighted group size of each cell c to exactly equal P̃c.9 As was noted in
Section 1.2.2, the poststratification estimator of the population mean,

µ̂PSy =

∑
i∈R w̃PS

i yi∑
i∈R w̃PS

i
, (2.2)

8 That is, P̂Hc[i] =
∑

i∈R di1i∈c/
∑

i∈R di is the design-weighted proportion of cell c in the
respondent set.

9 Note that in contrast to (1.6), which gives poststratification weights for an SRS, the weights in
(2.1) may vary within cells because they depend on the design weights di.
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is consistent and approximately unbiased if y and ρ are uncorrelated within
cells.10 Analytic formulas for estimating the sampling variance of poststrat-
ification and other weighting estimators are available (see, e.g., Särndal and
Lundstrom 2005; Kott 2006), but a general alternative is to estimate the sam-
pling distribution with the bootstrap (Section 1.2.1), making sure to recalculate
the weights w̃PS

i in each bootstrap sample (see Listing 2.5).

2.1.2 Raking

If the cells are defined by a cross-classification of auxiliary variables xxx, post-
stratification requires population targets for the joint distribution of those
variables, fU (xxx). By contrast, raking requires only their marginal distributions.
Suppose, for example, that xxx consisted of three categorical variables: gender
(male/female), race (black/white/other), and state. Poststratification on these
variables would require the population proportion of each gender-race-state
group, for a total of 2 × 3 × 50 = 300 population targets. Raking, however,
would require only the proportions of each gender, race, and state, respectively,
or 2+ 3+ 50 = 55 targets. Poststratification ensures that the weighted sample
matches the auxiliary variables’ joint distribution in the population, whereas
raking matches only their marginal distributions.11

Given that poststratification forces a closer match between sample and popu-
lation, why would raking be used? One reason is that poststratification requires
more detailed auxiliary information, which may not be available. If only
marginal population targets are available, then raking (or something similar)
may be the only feasible weighting method. Another barrier to poststratifica-
tion is the presence of empty population cells in the sample. If such cells exist,
then either some cells must be merged or an alternative method such as rak-
ing must be used. Even when poststratification is feasible, raking may still be
preferable if the cell sizes are small, which can result in large within-sample
variation in cell weights and thus high-variance estimators. From the perspec-
tive of mean squared error (MSE), the greater efficiency of raking may well be
worth a small increase in bias.
Under what conditions does raking lead to minimal increase in bias relative

to poststratification on the same set of auxiliary variables? When the effects of

10 Its “approximate” unbiasedness stems from the fact that in a non-SRS probability sample the
ratio estimate P̂Hc[i] in (2.1) has a small finite-sample bias (see footnote 4). This approximation
can be eliminated by substituting the (more variable) Horvitz-Thompson estimate P̂HTc[i].

11 Unlike poststratification weights, there is no analytic formula for raking weights, but the latter
can be calculated using a procedure known as iterative proportional fitting, which involves
iteratively adjusting the design weights to match each margin in succession until the weights
stabilize (Deming and Stephan 1940).
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the auxiliary variables are, in a certain sense, additive rather than interactive. In
particular, raking is justified under a model in which the inverse of each unit’s
response probability (its response influence ωi ≡ ρ−1

i ) is a log-linear additive
function of the auxiliary variables. The response influence can be thought of as
the unobserved counterpart of the observed design weight di ≡ π−1

i . Under a
log-linear model for ωi, raking yields weights w̃rake

i that are consistent estimates
of ωidi, and thus in turn produces consistent weighting estimators of population
quantities such as µy (Binder and Théberge 1988).
To illustrate, consider the case of an SRSwith two auxiliary variables, gender

and race, whose combinations result in 2× 3 = 6 cells (for a similar example,
see Little andWu 1991). If a log-linear model holds, then the expected response
influence of each unit i with gender g and race r is

E(ωg[i]r[i]) = eλ0+αg[i]+βr[i] , (2.3)

where αg is the effect of gender g and βr the effect of race r. Raking to match
the population margins of gender and race yields weights of the form

w̃rake
g[i]r[i] = eλ̂0+α̂g[i]+β̂r[i] , (2.4)

where λ̂0, α̂g[i], and β̂r[i] solve the constraints imposed by the marginal tar-
gets. These weights, which are constant within cells, imply the following set of
population targets for the cell proportions:

P̃rakegr = pgreλ̂0+α̂g[i]+β̂r[i] , (2.5)

where pgr is the proportion of the sample with gender g and race r.12 Under
the log-linear model in (2.3), P̃rakegr is the maximum likelihood estimate of the
population cell proportion Pgr (Little and Wu 1991, 88).
As these implied population targets suggest, raking can be thought of a vari-

ant of poststratification in which the actual cell proportions P̃PS are replaced
with the estimated cell targets P̃rake (Little 1993, 1010). In other words, raking
is equivalent to poststratifying the sample to the “smoothed” cell targets P̃rake,
which are equal to the sample proportions pgr times an adjustment to which
each variable contributes independently (that is, additively on the log scale). If
the log-linear model is true, then raking targets P̃rake will have the same expec-
tation as the corresponding poststratification targets P̃PS, but will have lower
sampling variability.

12 In a non-SRS probability sample, pgr would be replaced with the design-weighted estimate of
the proportion, P̂Hgr.
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2.2 Calibration
Both poststratification and raking can be subsumed under a more general
framework known as calibration (Deville and Särndal 1992). In this frame-
work, a sample is “calibrated” to the population by calculating weights that
ensure that the weighted sample exactly matches a set of population targets T̃xxx.
The goal of calibration is to find the vector of weights w̃ that differ as little as
possible from the design weights d while also matching the targets.
Formally, calibration finds the set of weights w̃ that, for some distance

measure D(·, ·), minimizes the sum

∑
i∈R

D(w̃i, di) (2.6)

subject to the K constraints

T̃xxxk =
∑
i∈R

w̃izik, k ∈ 1 . . .K, (2.7)

where each element of the auxiliary vector zzzi is a function of the auxiliary vari-
ables xxxi. For example, in the case of calibration on the indicator variable urban
(xi ∈ {0, 1}), we haveK = 1, zik = xi, and T̃xxx = µ̃x (the urban proportion of the
population). More generally, zzzi can consist of a set of indicators for the levels of
a single categorical xi (as in one-way poststratification), for the levels of multi-
ple auxiliary variables (as in raking), or for the cross-classification of multiple
variables (as in multi-way poststratification). Moreover, since calibration does
not require that the auxiliary variables be categorical, zik can also be some con-
tinuous transformation of one or more auxiliary variable. Thus, for example, a
sample could be calibrated to the first and second moments of the age distribu-
tion in the population by using the auxiliary vector zzzi = (agei, age2i ). Although
it is not always possible to satisfy these constraints – no set of weights can com-
pensate for an empty cell in the sample, for example – when calibration is feasi-
ble, the weighted sample will exactly match the population moments specified
in T̃xxx.
In the calibration framework, different weighting methods are distinguished

by their distance measure D(·, ·) and the form of the targets T̃xxx. Poststratifi-
cation (a form of linear weighting) uses the distance measure Dχ2

(w̃i, di) =

(w̃i−di)2/di and calibrates to the population totals for a mutually exclusive and
exhaustive set of cells. In contrast, raking (a form of entropy weighting) uses
the entropy distanceDent(w̃i, di) = wi log(wi/di) and calibrates to the marginal
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totals of the auxiliary variables.13 Other distance measures, such as that used
by “logit” calibration, are also possible (Deville and Särndal 1992).
Although calibration weights can vary slightly depending on what distance

measure is used, the differences are typically small (see Listings 2.4; see also
Kalton and Flores-Cervantes 2003, 85, table 2). Different distance metrics do
have their respective advantages. Linear weighting is analytically and compu-
tationally tractable, entropy weighting guarantees positive weights, and logit
calibration places upper and lower bounds on the weights. In general, how-
ever, the choice of distance metric is typically much less important than the
choice of population targets (Lumley 2010, 166).

2.3 Criteria for Auxiliary Vectors
The overriding importance of the choice of population targets T̃xxx – and thus of
the auxiliary vector zzz – can be seen more clearly by examining the formula for
the “nearbias” of the calibration estimator µ̂Wy . (The exact bias depends on an
additional term that tends to zero as the sample sizes grows, but the nearbias
provides a close approximation even in modest samples.) The nearbias of µ̂Wy
is given by the expression

nearbias(µ̂Wy ) = −N−1
∑
i∈U

(1− ρi)eρi, (2.8)

where eρi ≡ yi − zzz′iBBBU ;ρ is i’s residual from the ρ-weighted population
regression of y on zzz (Särndal and Lundstrom 2005, 98–99).
This formula highlights several important features of the bias of µ̂Wy . Con-

sistent with the asymptotic equivalence of different weighting methods noted
by Little and Wu (1991, 88), the nearbias does not depend on choice of the
distance measure D(·, ·) but rather on the choice of auxiliary vector zzzi. Specifi-
cally, the nearbias depends on the correlation between y and ρ conditional on zzzi.
One way this correlation can be broken is if the residuals e from an unweighted
population regression of y on zzz are uncorrelated with ρ. This includes the spe-
cial case where the outcome is perfectly predicted by a linear combination of
the auxiliary vector (i.e., yi = β′zzzi ∀i ∈ U , for some vector β), in which case
ei = 0 ∀i. The nearbias is also eliminated if the auxiliary vector linearly pre-
dicts the response influence (i.e., ωi = λ′zzzi ∀i ∈ U , for some vector λ).14 The
latter condition includes the special cases of full response (ρi = 1 ∀i ∈ U ) and
uniform response probabilities (ρi = ρ ∀i ∈ U ) (Särndal and Lundstrom 2005,
101–102).

13 Ireland and Kullback (1968). For a causal inference perspective on entropy weighting, see
Hainmueller (2012).

14 This holds under the condition that at least one element of zzzi is nonzero for all population units.
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In actual surveys, none of the above conditions is likely to be satisfied
exactly. Nevertheless, the theoretical conditions for zero nearbias illustrate the
most important criteria for selecting the auxiliary vector zzz. Specifically, as
Särndal and Lundstrom (2005, 22) note, the ideal auxiliary vector should

1. strongly predict the outcome of interest y;
2. strongly predict the probability of responding ρ; and
3. identify the domains (subpopulations) of interest.

The third criterion can be thought of as a specific restatement of the general
maxim to calibrate weights to the population of interest – in this case, a subset
of a larger population. So, for example, if the parameters of interest are the
mean ages of men and of women, then the population targets should be broken
down by gender (i.e., each auxiliary variable should be interacted with gender).
Adjustment weighting is sometimes described as entailing a bias-variance

trade-off, but this is not necessarily true (Little and Vartivarian 2005). In the
presence of nonresponse, an auxiliary vector that strongly predicts both the
outcome of interest y and the probability of response ρ will generally reduce a
calibration estimator’s variance as well as its bias. However, an auxiliary vector
with a robust association with ρ but a weak one with y will increase variance
without substantially reducing bias. Conversely, a strong association with y but
a weak one with ρ reduces variance without much of an effect on bias. Although
the ideal zzzwould predict both y and ρ, these effects would seem to argue for pri-
oritizing the former over the latter. The disadvantage of doing so, however, is
that it requires a different auxiliary vector (and thus a different set of weights)
for each outcome variable, whereas prioritizing the prediction of ρ does not.
Again, though: zzz must be at least somewhat predictive of each outcome of
interest or else weighting will increase variance without reducing bias.

2.4 Selecting an Auxiliary Vector
How exactly should analysts select an auxiliary vector that maximizes the
criteria stated in Section 2.3? To some degree, the selection problem can be
automated. Särndal and Lundstrom (2008), for example, recommend an R2-like
statistic that captures variability in predicted response probabilities and propose
that it be used in a stepwise selection procedure for the “best possible” auxiliary
vector. Owing to the computational burden, however, Särndal and Lundstrom
restrict their attention to “main effects” only – that is, to themarginal rather than
joint distributions of the auxiliary variables. Wagner (2012) surveys a wider
array of nonresponse indicators, including some that take into account auxiliary
vectors’ relationship with outcome variables, but does not propose a procedure
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for using them to select an auxiliary vector. Others, such as Andridge and Little
(2011), do propose such procedures but focus on maximum-likelihood or other
model-based estimators.
Recently, Caughey and Hartman (2017) have proposed framing the choice of

auxiliary vector as a variable-selection problem. If nonresponse bias is reduced
to the extent that the conditions yi = λ′zzzi ∀i ∈ U and ωi = λ′zzzi ∀i ∈ U are
satisfied, then the goal should be to select the zzz∗i that best predicts both yi andωi.
Unless the set of auxiliary variables xxx is small, it is not computationally feasible
to search over the set of possible auxiliary vectors and select the one with the
highest R2 (or other fit criterion). Caughey and Hartman thus suggest the use of
the least absolute shrinkage and selection operator, or lasso (Tibshirani 1996),
as a computationally efficient means of selecting the optimal zzz∗i . They propose
an algorithm whose starting point is a (multivariate) regression of yi and/or
an estimate of ωi on a high-order interaction of the auxiliary variables xxx. The
algorithm begins with a low complexity penalty, but the penalty is successively
increased until a zzz∗i is found for which calibration is possible.15

The best auxiliary vector is not necessarily the most complex one for which
calibration is feasible. Usually, the more complex the vector, the greater the
variation in weights, which in turn can increase estimators’ variance. One
common indicator of variance inflation is Kish’s (1965) design effect due to
weighting,

deffKish = 1+ var(w̃)/ ¯̃w2, (2.9)

where var(w̃) and ¯̃w are, respectively, the sample variance and mean of
the weights. Under certain assumptions (notably, probability sampling and
homoskedasticity of y), deffKish measures the ratio of the sampling variance
of µ̂y with unequal weights relative to its variance with equal ones. A com-
mon rule of thumb is to limit weight variability (by coarsening the auxiliary
vector or trimming extreme weights)16 if deffKish > 1.5, under the logic that
any increase in bias from doing so will be more than counterbalanced by a
decrease in variance. As Valliant, Dever, and Kreuter (2018, 395–414) note,
however, such ad hoc procedures lack firm theoretical grounding. Moreover,
under certain conditions (e.g., when nonresponse is substantial) large varia-
tion in weights can actually be conducive to efficient estimation. We therefore
caution against any automatic rule for limiting weight variability: it should be
done only when there is affirmative reason to believe that extreme weights are
increasing variance without a compensating decrease in bias.

15 Themore elaborate the auxiliary vector, the more likely that the target constraints in (2.7) cannot
be satisfied (e.g., due to empty cells).

16 Trimming weights will generally cause the weighted sample to deviate from the population
targets.



Target Estimation and Adjustment Weighting 21

More generally, it is unwise to select the auxiliary vector based on statistical
criteria alone. First, analysts often have theoretical and substantive knowledge
of the nonresponse mechanism and of correlates of the outcome of interest,
and this prior information should inform the choice of auxiliary vector (Beth-
lehem, Cobben, and Schouten 2011, 247–287).17 For example, it may be known
that nonresponse tends to be particularly severe among low-education males,
in which case the auxiliary vector should include the interaction of gender and
education. Second, considerations of interpretability may favor the selection
of a simpler auxiliary vector over one that is more powerful but also more
complex. This is particularly true of weights that will subsequently be used
by other analysts or that must be explained to project sponsors or other non-
experts. In such cases, it may be easier to explain weights that match, say, the
marginal population distributions of age, gender, education, and state than ones
that satisfy a more complicated set of interactions among these variables (e.g.,
age-by-education in some states but not others).
In sum, the specification of the auxiliary vector should generally be based

on a combination of substantive and statistical criteria (subject to practical
constraints). One heuristic procedure is the following:

1. Identify the most complex (i.e., most highly interacted) auxiliary vector
for which corresponding population targets can be derived from auxiliary
information.

2. If calibrating with the most complex vector is infeasible, select a minimal
subset of population benchmarks that, for substantive or pragmatic reasons,
the weighted sample must match if possible. Marginal benchmarks will
often suffice, but it may also be desirable to include certain key interactions
known a priori to be important.

3. Identify which feasible additions to the auxiliary vector (if any) substantially
increase its ability to predict nonresponse and outcomes of interest, over and
above the minimal vector selected in step 2. This may be done through a
formal procedure, such as those suggested by Särndal and Lundstrom (2008)
and Caughey and Hartman (2017), or through less structured analyses (e.g.,
a series of regressions involving different candidate auxiliary vectors).

4. Attempt to calibrate the sample using the auxiliary vector selected in steps
1–3. If calibration fails or the resulting weights are unacceptably vari-
able, reformulate the vector (e.g., by removing terms) and try again until
calibration succeeds.

As step 4 suggests, selecting an auxiliary vector is often an iterative process
of trial and error. That said, it is generally desirable to keep weight estimation

17 In Caughey andHartman’s approach, the lasso can be forced to select certain variables by setting
the penalty for their coefficients to 0 (Caughey and Hartman 2017, 20).
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separate from parameter estimation. Otherwise, the researcher may be tempted
to cherry-pick the auxiliary vector that yields the “best” (i.e., most publish-
able) substantive results. In some cases, weights can be validated by comparing
weighted and unweighted survey estimates with a population benchmark not
included in the population targets. Such out-of-sample validation is fairly rare
because the same qualities that make a variable a good benchmark also rec-
ommend it for inclusion in the auxiliary vector, but if possible validation
can provide compelling support for one’s weighting strategy (for examples,
see Section 5.3). Finally, it should be noted that the choice of auxiliary vec-
tor depends on the intended purpose of the weights – for example, are they
general-purpose weights, or will they be used to analyze only a single out-
come? To the extent that the latter is true, then the auxiliary vector’s ability to
predict the outcome of interest becomes correspondingly more important as a
selection criterion.

2.5 Summary of Weight Estimation
We have shown that the two most common weighting methods, poststrati-
fication and raking, can be considered special cases of calibration, a more
general weighting framework. Calibration entails weighting the sample so
that it matches a specified set of population targets, while deviating as little
as possible from the design weights. The population targets may consist of
marginal distributions (raking) or cell proportions (poststratification), or indeed
any function of one or more auxiliary variables. The extent to which calibra-
tion reduces nonresponse bias depends on the extent to which the auxiliary
vector (the functions of the auxiliary variables included in the population tar-
gets) predicts both nonresponse and the outcome of interest. Automating the
specification of auxiliary vectors is a topic of active research, but in most appli-
cations this choice should be based on a combination of statistical criteria and
substantive knowledge.

2.6 Example Code
The Code Ocean capsule for this section is published at https://doi.org/
10.24433/CO.3986927.v1.

Listing 2.1 Setup
1 ## Libraries
2 library(survey) # for analyzing complex surveys (see Lumley 2010)
3
4 ## Read data
5 gss_df <- readRDS("data/GSS2016_use.rds") # survey data
6 acs_df <- readRDS("data/ACS2016_use.rds") # auxiliary information
7

https://doi.org/10.24433/CO.3986927.v1
https://doi.org/10.24433/CO.3986927.v1
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8 ## Create design-weighted svydesign objects
9 gss_dwt <- svydesign(ids = ~vpsu, weights = ~design_wt, strata = ~vstrat,
10 data = gss_df, nest = TRUE)
11 acs_dwt <- svydesign(ids = ~1, weight = ~perwt, data = acs_df)
12
13 ## Create replicate-weight design (for bootstrapping; see Canty & Davison 1999)
14 gss_boot <- as.svrepdesign(gss_dwt, type = "bootstrap", replicates = 100)

Listing 2.2 Function for creating population targets from auxiliary information
and formula

1 create_targets <- function (target_design, target_formula) {
2 target_mf <- model.frame(target_formula, model.frame(target_design))
3 target_mm <- model.matrix(target_formula, target_mf)
4 wts <- weights(target_design)
5 colSums(target_mm * wts) / sum(wts) # returns vector of targets
6 }

Listing 2.3 Poststratification by gender
1 ## Method 1: Calculate weights manually: w_i = (P_i/p_i)*d_i
2 (male_prop_samp <- svymean(~sex, gss_dwt)["sexmale"]) # sample prop male (wtd)
3 (male_prop_pop <- svymean(~sex, acs_dwt)["sexmale"]) # target prop male
4 pswts <- ifelse(gss_dwt$variables$sex == "male",
5 (male_prop_pop/male_prop_samp)*weights(gss_dwt),
6 ((1 - male_prop_pop)/(1 - male_prop_samp))*weights(gss_dwt))
7
8 ### Compare weights of men and women
9 summary(pswts[gss_dwt$variables$sex == "male"]/mean(pswts)) # underrepresented
10 summary(pswts[gss_dwt$variables$sex == "female"]/mean(pswts)) # overrepresented
11
12 ## Method 2: Poststratification as a form of linear weighting
13 gss_ps <- calibrate(design = gss_dwt,
14 formula = ~sex,
15 population = create_targets(acs_dwt, ~sex),
16 calfun = "linear")
17
18 ## The two methods produce the same (normalized) weights.
19 cor(pswts, weights(gss_ps))
20 all.equal(pswts/mean(pswts), weights(gss_ps)/mean(weights(gss_ps)),
21 check.names = FALSE)

Listing 2.4 Calibration
1 ## Formula notation for auxiliary vector (function of auxiliary variables)
2 target_formula <- ~ (sex + age_int)^2 + I(age_int^2) + race3 + edu5
3
4 ## Vector of targets
5 (targets <- create_targets(acs_dwt, target_formula))
6
7 ## Linear weighting
8 gss_lwt <- calibrate(design = gss_dwt,
9 formula = target_formula,
10 population = targets,
11 calfun = "linear")
12
13 ## Entropy weighting (like raking but can use continuous variables)
14 gss_ewt <- calibrate(design = gss_dwt,
15 formula = target_formula,
16 population = targets,
17 calfun = "raking")
18



24 Quantitative and Computational Methods for the Social Sciences

19 ## Compare weights from different methods (they are very similar)
20 cor(weights(gss_lwt), weights(gss_ewt))
21 plot(weights(gss_lwt), weights(gss_ewt))
22 abline(0, 1)
23
24 ## Verify targets
25
26 ### means
27 svymean(~edu5 + sex + age_int + race3, gss_dwt) # unadjusted
28 svymean(~edu5 + sex + age_int + race3, acs_dwt) # target
29 svymean(~edu5 + sex + age_int + race3, gss_lwt) # linear weighting
30 svymean(~edu5 + sex + age_int + race3, gss_ewt) # entropy weighting
31
32 ### interaction of sex and age
33 svyby(~age_int, ~sex, gss_dwt, svymean) # unadjusted
34 svyby(~age_int, ~sex, acs_dwt, svymean) # target
35 svyby(~age_int, ~sex, gss_lwt, svymean) # linear weighting
36 svyby(~age_int, ~sex, gss_ewt, svymean) # entropy weighting
37
38 ### quantiles
39 svyquantile(~age_int, gss_dwt, seq(.1, .9, .1)) # unadjusted
40 svyquantile(~age_int, acs_dwt, seq(.1, .9, .1)) # target
41 svyquantile(~age_int, gss_lwt, seq(.1, .9, .1)) # linear weighting
42 svyquantile(~age_int, gss_ewt, seq(.1, .9, .1)) # entropy weighting

Listing 2.5 Bootstrapping calibrated survey designs
1 gss_lwt_boot <- as.svrepdesign(gss_lwt, type = "bootstrap", replicates = 100)
2 svyquantile(~age_int, gss_lwt_boot, q = .5) # bootstrap inference for median

3 Target Estimation
Until this point, we have assumed that the auxiliary information Ĭxxx consists of
the auxiliary variables’ joint distribution in the population fU (xxx) and that this
distribution is measured without error. If this is true, then any univariate or
multivariate moment of fU (xxx) can be included in the population targets T̃xxx, and
the sample can be weighted to match these targets (assuming no empty cells
or other sparsity constraints). As we have discussed, however, population tar-
gets are rarely known with certainty. Rather, they must usually be estimated
with the aid of a (perhaps implicit) measurement model relating the popula-
tion distribution fU (xxx) to the auxiliary information Ĭxxx. In other words, auxiliary
information is itself an estimate of population quantities, with a degree of error
that depends on how the information was measured.
This section discusses the problems that arise in the construction of pop-

ulation targets and reviews potential solutions. It focuses especially on the
dynamic ecological inference approach proposed by Caughey and Wang
(2019). We emphasize, however, that because target estimation has been rel-
atively neglected, how best to approach the problem is still an open question
and a subject of ongoing research.
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3.1 Illustration of the Problem
As motivation, consider the challenge faced by Berinsky et al. (2011) in
constructing adjustment weights for quota-sampled opinion polls conducted
between 1936 and 1945. These authors knew that, due to a combination of
intentional and unintentional sampling biases, the quota samples were unrepre-
sentative of the US adult population with respect to race, region, class, gender,
and other characteristics. Since these attributes were also correlatedwith impor-
tant political attitudes such as party identification, unweighted sample estimates
of these attitudes were likely biased. These scholars therefore sought to weight
the samples to be more representative of the target population (US adults) with
respect to these characteristics.
In this example, however, the construction of population targets presents sev-

eral complications, which can be illustrated with the auxiliary variables Black
(black/non-black), South (South/non-South), and Phone (phone/non-phone).
The first complication is that auxiliary information on these variables had to
be obtained from multiple data sources. Data on the first two variables were
gathered decennially by the US Census, so for census years their joint pop-
ulation distribution could be estimated with a high degree of precision from
Integrated Public Use Microdata Series (IPUMS) samples of census records
(Ruggles et al. 2010). Data on regional phone ownership rates, however, had
to be derived from the records gathered by American Telephone and Telegraph
(AT&T) in various years. No single data source contained information on the
joint distribution of Black, South, and Phone until 1960, the first year the US
Census included a question about phone ownership.
The second complication is that the distribution of each of these attributes

changed substantially across time. This is especially true of phone ownership,
which between 1940 and 1960 increased from 37% to 78%of households (Field
2006), but this period also brought substantial change in regions’ relative pop-
ulation sizes as well as in the racial breakdown within regions. Consequently,
calibrating to a static set of targets is unlikely to make samples representative of
the population at any particular point in time. Further complications are raised
by discrepancies between how the sources of auxiliary data measure phone
ownership and how opinion polls in this period did so (e.g., at the household
versus person level).
Table 3.1, using data from 1940, illustrates the structure of the auxiliary

information available in this application. The table presents a 2× 2 × 2 array
of cells defined by South, Black, and Phone. True population proportions are
represented by P and (estimated) target proportions by P̆. Subscripts indicate
the presence (uppercase) or absence (lowercase) of the three attributes, with



26 Quantitative and Computational Methods for the Social Sciences

Table 3.1 Phone ownership by race and region in 1940. Unobserved
proportions are represented by P and observed proportions by P̆. Subscripts

indicate the presence (uppercase) or absence (lowercase) of the three
attributes.

South Non-South
(P̆S++ = 0.25) (P̆s++ = 0.75)

Phone Non-Phone Phone Non-Phone

Black PSBP PSBp P̆SB+ = 0.06 PsBP PsBp P̆sB+ = 0.03
Non-Black PSbP PSbp P̆Sb+ = 0.19 PsbP Psbp P̆sb+ = 0.72

P̆S+P = 0.05 P̆S+p = 0.21 P̆S+P = 0.30 P̆S+p = 0.45

a subscript + indicating summation over the levels of the omitted attribute.
Formally, the auxiliary information in this example is

Ĭxxx = {̆IIPUMS
xxx , ĬAT&Txxx }

= {(P̆SB+, P̆Sb+, P̆sB+, P̆sb+), (P̆S+P, P̆S+p, P̆s+P, P̆s+p)}. (3.1)

Berinsky et al. thus had auxiliary information on the joint population distribu-
tions of South and Black (from IPUMS) and of South and Phone (from AT&T)
but not the joint distribution of all three variables.

3.2 Approaches to Target Estimation
What kinds of population targets could be constructed from the auxiliary infor-
mation available in the example just described? One approach, the one actually
taken in Berinsky et al. (2011), would be to create raking weights based on
marginal distributions alone. In this case, the population targets would be

T̃xxx = {P̃S++, P̃+B+, P̃++P}, (3.2)

where, for example, P̃S++ = P̆S++ represents the proportion of the population
that lives in the South (recall that ˘ indicates auxiliary information and ˜ indi-
cates the population targets used to weight). As Section 2.3 explained, raking
on the marginal proportions yields consistent estimators if either the response
influence ω or the survey outcome y is explained by a linear combination of
the attributes South, Black, and Phone. If, however, both ω and y depend on
interactions among these attributes – because, say, black Southerners were par-
ticularly underrepresented in early polls, as they in fact were – then calibrating
to the marginal proportions will not in general eliminate bias. Rather, it is nec-
essary to calibrate the sample to the (unobserved) interior cell proportions in
Table 3.1.
An alternative approach, suggested by Leeman and Wasserfallen (2017),

is to create “synthetic” joint population targets from the observed marginal
proportions. The simplest way to do this is to estimate the interior cells in



Target Estimation and Adjustment Weighting 27

Table 3.1 as the product of the marginal proportions (Leeman andWasserfallen
also propose more sophisticated variants of this approach). The targets are
then

T̃xxx = {P̃SBP, P̃SBp, P̃SbP, P̃Sbp, P̃sBP, P̃sBp, P̃sbP, P̃sbp}, (3.3)

where, for example, non-black Southerners without a phonewould be estimated
to comprise P̃Sbp = P̆Sb+

P̆S++
× P̆S+p

P̆S++
× P̆S++ = 0.19

0.25 × 0.21
0.25 × 0.25 = 16%

of the total population. These targets could then be used to poststratify the poll
samples to match the (estimated) joint distribution of the three variables.18 This
method is valid under the assumption that Black and Phone are independent in
the population. Both historical intuition and external data suggest that, contrary
to this assumption, phone ownership was much lower among blacks than non-
blacks. The 1960 IPMUS, for example, reports a phone-ownership rate of 70%
among Southern whites versus 39% among Southern blacks.
Ideally, then, one would want to incorporate external information on the pop-

ulation covariance of Black and Phone. One way to do so would be through
model-based imputation. Ansolabehere and Rivers (2013, 314–315), for exam-
ple, describe how a synthetic sampling frame (SSF) can be used as population
targets for adjusting survey samples from online panels.19 The SSF is created
by merging multiple government surveys, which are then augmented by imput-
ing additional variables based on the predicted values of amodel fit to data from
a separate survey containing these variables. The imputed variables’ distribu-
tion in the SSF thus reflects their covariance with the variables contained in the
imputation model. Applying the SSF method to quota-sampled opinion polls
would require an external data source, such as a special government survey,
from which the phone ownership’s relationship with race and region could be
modeled and then imputed onto the population targets used for weighting.
None of the methods described in this section addresses the complication of

population change, which requires that population targets be dynamic rather
than static. When population data are observed in the same form at differ-
ent points in time, constructing dynamic population targets can be relatively

18 This simple version of the “synthetic poststratification” method is essentially identical to raking
except that it ignores the sample distribution across cells, treating them instead as uniform (i.e.,
pc = n−1

R , ∀c). This can be seen by substituting into equation (2.5) the solutions λ̂0 = log(nR),
α̂r = log(P̆g+), and β̂r = log(P̆+r). This yields the maximum likelihood estimates P̃rakegr =

n−1
R exp{log(nR) + log(P̆g+) + log(P̆+r)} = P̆g+ × P̆+r ∀g, r, where P̆g+ and P̆+r are the
marginal population proportions of gender g and race r, respectively. These are simply the raking
estimates produced by iterative proportional fitting (see Binder and Théberge 1988, 49–50;
Little and Wu 1991, 87, equation (5)).

19 The adjustment is performed through a combination of matching and propensity-score
weighting.
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straightforward. For example, Enns and Koch (2013) construct dynamic tar-
gets for the joint distribution of gender, race, education, and state for the
years between 1950 and 2000 by linearly interpolating the cell proportions in
decennial IPUMS samples. Similar linear interpolation would be possible for
marginal proportions in Table 3.1, though not the interior cells, using census
and AT&T data from years before and after 1940. Of course, the accuracy of the
interpolated values would depend on whether the rate of change was constant
between observed values. While fairly reasonable after 1940, the assumption
of linear change is less tenable for earlier years, especially for phone owner-
ship, which actually fell and then recovered during the Depression decade of
the 1930s.

3.3 Dynamic Ecological Inference
An alternative approach to target estimation, which incorporates elements of
several of the approaches reviewed in Section 3.2, couches it as a problem of
dynamic ecological inference (EI). In general terms, EI is the drawing of con-
clusions about individuals from aggregate information (Freedman 2001; King,
Rosen, and Tanner 2004). For example, a classic application of EI is estimat-
ing the proportion of individuals in different racial categories who register with
each political party, given aggregate data on race and party registration. Our
goal in this application is analogous: We wish to use aggregate data on the
marginal distributions of Black and Phone within regions to make inferences
about the proportion of individuals with each combination of these traits.
Though EI is traditionally applied to data measured at a single point in time,

Quinn (2004) has shown that it can be applied to longitudinal data as well.
For our purpose, a dynamic approach to EI has two advantages. First, and most
obviously, incorporating data from and producing estimates for multiple points
in time helps address the problem of population change, which can render static
targets inaccurate. Second, data from other time points – even from well out-
side the period of interest – can be a crucial source of additional information
regarding interior cells, without which EI is unreliable (Freedman 2001; Wake-
field 2004). This second concern is particularly salient in our application here,
for we know from the 1960 IPUMS that race and phone ownership were not
independent within regions. By allowing information from later time points to
inform estimates for the period of interest (in this case, 1936–1945), a dynamic
EI model has the potential to substantially improve the accuracy of population
targets.
Caughey and Wang (2019) describe a Bayesian framework for dynamic EI

with two basic components. The first component is an observation model that
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links the auxiliary information to the population proportions at a given point
in time. The second is a transition model that characterizes the evolution of
the population proportions across time periods. Through these two models, the
estimates at a given time point are jointly informed by the data available at that
time point and the estimates for other periods, which are themselves informed
by data from other periods. In this way, data from the past or future (e.g., the
1960 IPUMS) indirectly inform estimates for periods when less detailed data
are available.
Formally, for each period t and data source m, the observation model can be

written as

n̆nnauxtm ∼ multinomial(AAAtmPPPt, nauxtm ) (3.4)

where nauxtm is the sample size of the auxiliary data source, n̆nnauxtm = ⌈P̆PPtm × nauxtm ⌋
is a vector of (rounded) marginal totals from the auxiliary data, PPPt is a vec-
tor of cell proportions, and AAAtm is an indicator matrix whose multiplication
with PPPt has the effect of summing PPPt across the margins represented in P̆PPtm.
The sampling process is modeled with the Multinomial distribution, whose
variance is inversely proportional to the sample size, nauxtm .20 So, for exam-
ple, a million-observation microsample from the 1940 US Census containing
the variables South and Black would yield nauxtm = 106 and marginal propor-
tions P̆tm = (P̆SB+, P̆Sb+, P̆sB+, P̆sb+) and would have an indicator matrix of
the form

AAAtm =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 .

Under the Multinomial observation model, the expected value of P̆SB+, for
example, isPSBP+PSBp, fromwhich P̆SB+ differs due only to sampling variabil-
ity. Thus, absent further information, the model informs estimates of the sum of
population cells across the given margins but does not place any constraints on
the cell proportions within the marginal categories (e.g., the phone-ownership
rate among Southern blacks).
Further information can come from two sources: additional auxiliary data

from the same period (e.g., AT&T data on phone ownership) or estimates from
other periods. The latter information is transmitted via the transition model:

20 The observation model in (3.4) can also be written as a Dirichlet distribution. This has the
advantage of avoiding rounding, though the Dirichlet cannot be used if P̆PPtm contains 0s (i.e., if
there are any empty cells in the auxiliary data).
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Figure 3.1 Estimated phone ownership by race and region, 1940–1960.

PPPt ∼ Dir(PPPt−1nevol), (3.5)

where Dir denotes the Dirichlet distribution, which is closely related to the
Multinomial. In the Dirichlet transition model, the expected value of PPPt is PPPt−1,
and the transition variance is inversely proportional to nevol (which would typi-
cally be set by the user). The transition model thus serves as a prior distribution
for Pt, propagating information forwards and backwards in time. If data distin-
guishing two cells are available in one year (e.g., 1960) but not in others (e.g.,
1940), the cell estimates in other years will nonetheless differ from one another
due to the information conveyed through the transition model.
Figure 3.1 reports the results of a dynamic EI model estimated using the

marginal data reported in Table 3.1 plus the full three-way cross-tabulation
from the 1960 IPUMS. The figure plots the estimated percentage of phone
owners in each race-region category in each year between 1940 and 1960.
Even though the data for 1940 contain no information on phone ownership by
race within each region, the estimates for 1940 nonetheless show a clear gap
between blacks and non-blacks. This is because transition model propagates
the information contained in the 1960 IMPUS backwards in time. The result
is that estimates for the period of interest (circa 1940) more accurately reflect
the joint distribution of South, Black, and Phone. These estimates (or functions
thereof) can then be used as dynamic population targets for calibration of poll
samples.
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3.4 Uncertainty in Population Targets
Whether they are estimated from a model or calculated directly from auxil-
iary data, population targets are usually subject to some uncertainty. It is often
possible to estimate the magnitude of this uncertainty from the sample size
and sampling design of the auxiliary data source (e.g., if the auxiliary data
are from another survey) or from the results of an EI or other measurement
model. Uncertainty estimates may also reflect subjective judgment about the
targets’ reliability (e.g., in the case of auxiliary information derived from expert
estimates). In practice, almost all empirical applications ignore uncertainty
in population targets. One reason for this may be that nearly every textbook
treats targets as known rather than estimated (but see Valliant, Dever, and
Kreuter 2018). Recently, however, survey statisticians have begun to consider
the problem of uncertain population targets from a variety of angles.
One line of research focuses on how the use of estimated targets can inflate

the variance of calibration estimators. Dever and Valliant (2010), for example,
show that if targets are estimated and the auxiliary data source is not substan-
tially larger than the survey sample, variance estimates for the conventional
poststratification estimator can exhibit severe negative bias. They propose
jackknife-based variance estimators that mitigate this downward bias. In sub-
sequent work, Dever and Valliant (2016) extend these results to the generalized
regression (GREG) estimator,

µ̂GREGy = µ̂Hy + (µ̃zzz − µ̂H
zzz )

′B̂BBR

= µ̂Hy + (µ̃zzz − µ̂H
zzz )

′

[∑
i∈R

dizzzizzz′i

]−1 [∑
i∈R

dizzziyi

]
(3.6)

a form of linear weighting that includes poststratification as a special case.21

Särndal and Traat (2011) consider calibration estimation of subpopulations
from a similar perspective.
The aforementioned works employ estimators that simply substitute the esti-

mated targets where known ones would ordinarily be. Greater efficiency can
be obtained, however, by altering the estimator to account for uncertainty in

21 Deville and Särndal (1992, 376–377). GREG implies the calibration weights

wi = di(1+ zzz′iλ) ∀i ∈ R,

where

λ =

∑
i∈R

dizzzizzz′i

−1

N
(
µ̃zzz − µ̂H

zzz
)
.
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the targets. In the case of GREG, doing so results in a ridge regression version
of (3.6) in which the coefficients B̂BBR are penalized in proportion to the targets’
uncertainty (Deville 2000, 208). The “ridge” GREG estimator, which under
certain assumptions is maximally efficient, implicitly calibrates the sample to
an alternative set of targets,

µ̃∗
zzz = Λ̂µ̃zzz + (III− Λ̂)µ̂H

zzz , (3.7)

where III is an identity matrix and Λ̂ = v̂ar(µ̂H
zzz ) /

[
v̂ar(µ̃zzz) + v̂ar(µ̂H

zzz )
]
indexes

the uncertainty of the sample estimates of µzzz relative to the uncertainty of the
corresponding targets (Guandalini and Tillé 2017, 257). The modified targets
µ̃∗
zzz are thus precision-weighted averages of the target and sample estimates.

As v̂ar(µ̃zzz) tends to 0 (its value when the targets are known with certainty), Λ̂
converges on the identity matrix and the modified estimator reduces to classic
GREG calibrated on µ̃zzz.
In practice, it is not always obvious whether it is better to calibrate to the

observed targets µ̃zzz or to the precision-weighted targets µ̃∗
zzz defined in (3.7).

Both estimators are asymptotically unbiased under conditions similar to those
described in Section 2.3 (Dever and Valliant 2016, 296–297). The efficiency
properties used to justify ridge GREG are derived under the assumption of
probability sampling with full response.22 In the presence of nonresponse, it
may be better from a bias perspective to calibrate to µ̃zzz rather let the targets be
informed by the (biased) sample estimates µ̂H

zzz . In any case, simulations reported
by Dever and Valliant (2016, 305) suggest that calibrating to any reasonably
reliable set of targets substantially reduces the bias of survey estimators relative
to no calibration at all.
An additional practical consideration is that analytical formulas for point

and variance estimators in the presence of uncertain targets are not available
for all forms of calibration (e.g., raking). However, a general algorithm for
propagating uncertainty in the targets, method of composition (MOC), can be
applied to essentially any calibration (or other) estimator (Tanner 1996, 52–54;
Treier and Jackman 2008, 215–216; for code, see Listing 3.7). MOC estimates
the marginal distribution of a parameter by using Monte Carlo simulation to
integrate over uncertainty in the data used to estimate the parameter. Denote
the estimated measurement-error distribution of the targets T̃xxx as p̃(T̃xxx), and let
p̂(θ̂y | T̃xxx) denote the estimated sampling distribution of the survey estimate
θ̂y conditional on the population targets. The marginal distribution p̂(θ̂y) =∫
p̂(θ̂y | T̃xxx)p̃(T̃xxx)dT̃xxx can be estimated via the following two-step algorithm.

For each iteration s ∈ {1 . . . S}:

22 This is true at least of Guandalini and Tillé (2017, 251). The point is less clear in Deville (2000).
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1. Draw one value T̃(s)xxx from p̃(T̃xxx).
2. Given the sampled value T̃(s)xxx :

(a) Estimate p̂(s)
(
θ̂y | T̃(s)xxx

)
.

(b) Draw one value θ̂(s)y from p̂(s)
(
θ̂y | T̃(s)xxx

)
.

Each value θ̂(s)y will be a draw from the marginal distribution p̂(θ̂y), and as S
grows the set of sampled values will approximate p̂(θ̂y) increasingly closely.
If p(θ̂y|T̃xxx) cannot be estimated analytically, the bootstrap could be employed

instead. In this case, θ̂(s)y in step 2 would be replaced with its value in one boot-
strap sample from the survey data (still calculated using T̃(s)xxx ). Repeating this
S times would also yield S samples from p̂(θ̂y). This modified MOC proce-
dure essentially combines a parametric bootstrap (Davison and Hinkley 1997,
11–21) in step 1 with a nonparametric bootstrap in step 2.
For a practical illustration of MOC, consider the task of poststratifying a

survey sampleR tomatch the partisan distribution in the US population, as esti-
mated by another (more accurate) survey (see. Kastellec et al. 2015). From this
benchmark survey, we obtain T̃xxx = P̃ ≡ (P̃D, P̃I, P̃R), the vector of estimated
proportions of Democrats, Independents, and Republicans in the population.
In large samples, p̃(T̃xxx) = p̃(P̃) should be well approximated by the multi-
variate normal distribution N3(P̃, Σ̃P̃), where Σ̃P̃ is the estimated covariance
of P̃. We therefore draw S =10,000 samples from N3(P̃, Σ̃P̃). With each
draw P̃(s), we calculate poststratification weights w̃(s)

i = (P̃(s)
c[i]/P̂

H
c[i])di ∀i ∈ R

and a poststratification estimate θ̂(s)y =
∑

R w̃(s)
i yi

/∑
R w̃(s)

i , which too has
an approximately normal distribution, N(θ̂(s)y , σ̂2θy). Then, for each s we draw

one value θ̂
∗(s)
y from N(θ̂(s)y , σ̂2θy) = p̂(s)

(
θ̂y | P̃(s)

)
= p̂(s)

(
θ̂y | T̃(s)xxx

)
. The

resulting vector θ̂∗
y comprises 10,000 independent draws from the marginal

distribution p̂(θ̂y).

3.5 Summary of Target Estimation
Target estimation, being much less studied than weight estimation, is a more
open and unsettled topic. Guidelines and best practices are generally unavail-
able. Nevertheless, several lessons do present themselves. The most basic is
that auxiliary information cannot usually be taken as a complete and faith-
ful portrait of the target population. Rather, auxiliary information is typically
fragmentary and subject to various sources of both systematic and randommea-
surement error. Its temporal coverage also frequently fails to match that of the
survey data being analyzed. Addressing these issues requires, at the very least,
explicit justification of measurement assumptions and perhaps a full-fledged
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model linking the auxiliary information to the population of interest. Uncer-
tainty in the population targets, if substantial, should be addressed as well. This
section has discussed several potential solutions, but using a specific method is
less important than acknowledging these issues and taking reasonable step to
ameliorate them.

3.6 Example Code
The Code Ocean capsule for this section is published at https://doi.org/
10.24433/CO.7194431.v1.

Listing 3.1 Setup
1 set.seed(1) # for reproducibility
2
3 ## Libraries
4 library(tidyverse) # for useful utilities
5 library(haven) # for reading Stata files
6 library(survey) # for analyzing complex surveys
7 library(rstan) # for Bayesian simulation
8 library(parallel) # for parallel processing (optional)
9 ### If the package `estsubpop` is not installed, run the following line:
10 devtools::install_github("devincaughey/estsubpop")
11 library(estsubpop) # for dynamic ecological inference
12
13 ## Options
14 rstan_options(auto_write = TRUE) # to avoid recompilation
15 options(mc.cores = detectCores()) # to run on multiple cores (optional)
16
17 ## Function for creating targets
18 create_targets <- function (target_design, target_formula) {
19 target_mf <- model.frame(target_formula, model.frame(target_design))
20 target_mm <- model.matrix(target_formula, target_mf)
21 wts <- weights(target_design)
22 colSums(target_mm * wts) / sum(wts) # returns vector of targets
23 }
24
25 ## Auxiliary information
26 st_race_tab <- readRDS("data/st_race_tab.rds") # 1930-2016
27 st_race_phone_tab <- readRDS("data/st_race_phone_tab.rds") # 1960-1990
28 phone40_tab <- readRDS("data/phone40_tab.rds") # 1940
29 phone40_tab$PHONE <- factor(phone40_tab$PHONE)
30
31 ## Survey data (AIPO #380, October 1946)
32 aipo0380 <- read_dta("data/AIPO0380FW.dta") %>%
33 filter(!is.na(SOUTH) & !is.na(BLACK) & !is.na(PHONE)) %>%
34 mutate_if(is.labelled, as_factor)
35
36 aipo0380$SOUTH <- factor(aipo0380$SOUTH, labels = levels(st_race_tab$SOUTH))
37 aipo0380$BLACK <- factor(aipo0380$BLACK, labels = levels(st_race_tab$BLACK))
38 aipo0380$PHONE <- factor(aipo0380$PHONE, labels = levels(phone40_tab$PHONE))
39
40 ## Survey designs
41 phone40_ds <- svydesign(ids = ~1, weights = ~Freq, data = phone40_tab)
42 st_race_ds <- svydesign(ids = ~1, weights = ~Freq, data = st_race_tab)
43 st_race_phone_ds <- svydesign(ids = ~1, weights = ~Freq,
44 data = st_race_phone_tab)
45 aipo0380_srs <- svydesign(~1, data = aipo0380) # assumes simple random sampling

https://doi.org/10.24433/CO.7194431.v1
https://doi.org/10.24433/CO.7194431.v1
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Listing 3.2 Option 1: Use one-way margins as targets
1 ### Create targets
2 (margins_south_1940 <- create_targets(subset(st_race_ds, YEAR == 1940), ~SOUTH))
3 (margins_black_1940 <- create_targets(subset(st_race_ds, YEAR == 1940), ~BLACK))
4 (margins_phone_1940 <- create_targets(phone40_ds, ~PHONE))
5 margins_1940 <- c(margins_south_1940, margins_black_1940, margins_phone_1940)
6 margins_1940 <- margins_1940[!duplicated(names(margins_1940))]
7
8 ### Weight (i.e., rake) using marginal targets
9 aipo0380_mar <- calibrate(design = aipo0380_srs,
10 formula = ~SOUTH + BLACK + PHONE,
11 population = margins_1940,
12 calfun = "raking")

Listing 3.3 Option 2: Use “synthetic” cell proportions as targets (equivalent to
raking with uniform base weights)

1 ### Create synthetic targets
2 #### Tables containing marginal proportions
3 xt_s40 <- svytable(~SOUTH, subset(st_race_ds, YEAR == 1940), Ntotal = 1) %>%
4 as.data.frame()
5 xt_b40 <- svytable(~BLACK, subset(st_race_ds, YEAR == 1940), Ntotal = 1) %>%
6 as.data.frame()
7 xt_p40 <- svytable(~PHONE, subset(phone40_ds, YEAR == 1940), Ntotal = 1) %>%
8 as.data.frame()
9 #### Assign each cell a proportion estimated from the marginals
10 combos <- expand.grid(lapply(aipo0380[c("SOUTH", "BLACK", "PHONE")], levels))
11 combos$Freq <- NA
12 for (i in 1:nrow(combos)) {
13 p_s <- xt_s40$Freq[xt_s40$SOUTH == combos$SOUTH[i]]
14 p_b <- xt_b40$Freq[xt_b40$BLACK == combos$BLACK[i]]
15 p_p <- xt_p40$Freq[xt_p40$PHONE == combos$PHONE[i]]
16 combos$Freq[i] <- p_s * p_b * p_p
17 }
18 #### Convert to targets
19 combos_ds <- svydesign(~1, weights = ~Freq, data = combos)
20 synth_targets <- create_targets(combos_ds, ~SOUTH * BLACK * PHONE)
21
22 ### Weight (i.e., postratify) using synthetic targets
23 aipo0380_syn1 <- calibrate(design = aipo0380_srs,
24 formula = ~SOUTH * BLACK * PHONE,
25 population = synth_targets,
26 calfun = "raking") # "linear" gives exact same result
27
28 ### Poststratifying to synthetic targets is equivalent to raking a sample with
29 ### equal-sized cells (i.e., ignoring cell sizes in the sample)
30 aipo0380_unif <- postStratify(design = aipo0380_srs,
31 strata = ~SOUTH * BLACK * PHONE,
32 population = mutate(combos, Freq = 1))
33 svytable(~SOUTH + BLACK + PHONE, aipo0380_unif) # weighted cell sizes all equal
34
35 aipo0380_syn2 <- calibrate(design = aipo0380_unif,
36 formula = ~SOUTH + BLACK + PHONE,
37 population = margins_1940,
38 calfun = "raking")
39
40 all.equal(weights(aipo0380_syn1), weights(aipo0380_syn2), tolerance = .00001,
41 check.attributes = FALSE) # same
42 all.equal(weights(aipo0380_mar), weights(aipo0380_syn2), tolerance = .00001,
43 check.attributes = FALSE) # different
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Listing 3.4 Option 3: Weight to two-way margins
1 ### Create targets
2 margins_south_black_1940 <-
3 create_targets(subset(st_race_ds, YEAR == 1940), ~SOUTH * BLACK)
4 margins_south_phone_1940 <- create_targets(phone40_ds, ~SOUTH * PHONE)
5 margins_1940_2wy <- c(margins_south_black_1940, margins_south_phone_1940)
6 margins_1940_2wy <- margins_1940_2wy[!duplicated(names(margins_1940_2wy))]
7
8 ### Weight (i.e., rake) to two-way marginals
9 aipo0380_2wy <- calibrate(design = aipo0380_srs,
10 formula = ~(SOUTH + BLACK)^2 + (SOUTH + PHONE)^2,
11 population = margins_1940_2wy,
12 calfun = "raking")
13
14 summary(weights(aipo0380_2wy) / mean(weights(aipo0380_2wy))) # extreme weights

Listing 3.5 Option 4: Dynamic ecological inference
1 ## Design objects
2 d_ls <- list(phone40_ds,
3 subset(st_race_ds, YEAR %in% 1940), # use only 1940 info
4 subset(st_race_phone_ds, YEAR %in% 1960)) # use only 1960 info
5
6 ## Formulas for auxiliary vectors (order must correspond to designs).
7 ### Note that here we follow the syntax for `svytable`, in which `+` indicates
8 ### interaction. Separate marginals are indicated with separate formulas, as in
9 ### `list(~PHONE, ~SOUTH)`, though this should rarely be needed.
10 f_ls <- list(list(~PHONE + SOUTH), # `phone40_ds`
11 list(~BLACK + SOUTH), # `st_race_ds`
12 list(~PHONE + BLACK + SOUTH)) # `st_race_phone_ds`
13
14 ## Arguments for est_subpop
15 args_ls <- list(
16 periods_to_est = 1940:1960, # years we want estimates for
17 design_ls = d_ls, # list of survey designs
18 formulae_ls = f_ls, # list of formulas
19 pi_prior = "uniform", # prior for cell probabilities
20 n_prior = "vague", # precision of cell priors
21 n_evolve_meanlog = 10, # sets n^evolve to e^10...
22 n_evolve_sdlog = NULL, # ...with no prior uncertainty
23 verbosity = 1, # give me info
24 sampling_model = "multinomial", # alternative: "dirichlet"
25 # args below passed to rstan::sampling
26 control = list(adapt_delta = .9, max_treedepth = 10),
27 chains = 4,
28 iter = 10000,
29 refresh = 100,
30 thin = 1,
31 seed = 1980)
32
33 ## Estimate model
34 est_out <- do.call(est_subpop, args_ls) # takes about 2 minutes per chain
35
36 ## Check sampling diagnostics
37 print(est_out$stan_out)
38
39 ## Extract estimated proportions
40 pi_samps <- estsubpop::get_pi(est_out)
41
42 ## Summarize proportions
43 pi_summ <- pi_samps %>%
44 group_by(PHONE, BLACK, SOUTH, Period) %>%
45 summarise(post_mean = mean(value), # point estimate
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46 post_sd = sd(value), # Bayesian standard error
47 post_q05 = quantile(value, .05), # Bayesian confidence interval
48 post_q95 = quantile(value, .95))
49
50 ## Calculate phone ownership percentages
51 phone_samps <- pi_samps %>%
52 filter(iterations %in% seq(1, max(iterations), 100)) %>% # subset for speed
53 group_by(BLACK, SOUTH, Period, chains, iterations) %>% # within iteration
54 summarise(phone_pct = 100 * value[PHONE == "Phone"] / # ... calc group pct
55 (value[PHONE == "Phone"] + value[PHONE == "No Phone"]))
56
57 ## Summarize phone ownership percentages (for 1940 and 1960)
58 phone_samps %>%
59 group_by(SOUTH, BLACK, Period) %>%
60 summarise(phone_pct_q05 = quantile(phone_pct, .05),
61 phone_pct_q50 = quantile(phone_pct, .50),
62 phone_pct_q95 = quantile(phone_pct, .95)) %>%
63 filter(Period %in% c(1940, 1960))
64
65 ## Weight to match estimated targets
66
67 dei_ds <- svydesign(~1, weights = ~post_mean, data = pi_summ)
68
69 ### Calibrate to targets for 1940 (for comparison with weights created above)
70 dei_targets_1940 <-
71 create_targets(subset(dei_ds, Period == 1940), ~SOUTH * BLACK * PHONE)
72 aipo0380_dei40 <- calibrate(design = aipo0380_srs,
73 formula = ~SOUTH * BLACK * PHONE,
74 population = dei_targets_1940,
75 calfun = "raking")
76
77 ### Calibrate to targets for 1946 (when poll was actually conducted)
78 dei_targets_1946 <-
79 create_targets(subset(dei_ds, Period == 1946), ~SOUTH * BLACK * PHONE)
80 aipo0380_dei46 <- calibrate(design = aipo0380_srs,
81 formula = ~SOUTH * BLACK * PHONE,
82 population = dei_targets_1946,
83 calfun = "raking")

Listing 3.6 Compare results of weighting to different targets
1 ## Marginal distributions
2 margins_1940 # marginal targets (1940)
3 svymean(~SOUTH + BLACK + PHONE, aipo0380_srs) # unweighted
4 svymean(~SOUTH + BLACK + PHONE, aipo0380_mar) # one-way marginals (1940)
5 svymean(~SOUTH + BLACK + PHONE, aipo0380_syn1) # synthetic (1940)
6 svymean(~SOUTH + BLACK + PHONE, aipo0380_2wy) # two-way marginals (1940)
7 svymean(~SOUTH + BLACK + PHONE, aipo0380_dei40) # dynamic EI (1940)
8 svymean(~SOUTH + BLACK + PHONE, aipo0380_dei46) # dynamic EI (1946)
9
10 ## Distribution of PHONE by SOUTH and BLACK
11 svyby(~PHONE, by = ~BLACK + SOUTH, aipo0380_srs, svymean) # unweighted
12 svyby(~PHONE, by = ~BLACK + SOUTH, aipo0380_mar, svymean) # one-way (1940)
13 svyby(~PHONE, by = ~BLACK + SOUTH, aipo0380_syn1, svymean) # synthetic (1940)
14 svyby(~PHONE, by = ~BLACK + SOUTH, aipo0380_2wy, svymean) # two-way (1940)
15 svyby(~PHONE, by = ~BLACK + SOUTH, aipo0380_dei40, svymean) # dynamic EI (1940)
16 svyby(~PHONE, by = ~BLACK + SOUTH, aipo0380_dei46, svymean) # dynamic EI (1946)
17
18 ## Party identification
19 calc_dem_rep_diff <- function (design) {
20 svycontrast(svymean(~PID3, design, na.rm = TRUE),
21 quote(PID3Democrat - PID3Republican))
22 }
23 calc_dem_rep_diff(aipo0380_srs) # est = -1% (SE = 1.7%)
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24 calc_dem_rep_diff(aipo0380_mar) # est = +10% (SE = 2.0%)
25 calc_dem_rep_diff(aipo0380_syn1)
26 calc_dem_rep_diff(aipo0380_2wy)
27 calc_dem_rep_diff(aipo0380_dei40)
28 calc_dem_rep_diff(aipo0380_dei46) # est = +5% (SE = 2.7%)
29 ### Whether and how to weight makes a big difference in this case!

Listing 3.7 Propagating uncertainty in the population targets
1 ### Sample 1000 iterations from population targets
2 pi_samps <- mutate(pi_samps, chain_iter = interaction(chains, iterations))
3 chain_iter_sample <- sample(levels(pi_samps$chain_iter), 1000)
4 pi_samps_subset <- filter(pi_samps, chain_iter %in% chain_iter_sample)
5
6 ### Use method of composition to propagate uncertainty
7 est_samps <- vector(mode = "list", length = length(chain_iter_sample))
8 boot_samps <- vector(mode = "list", length = length(chain_iter_sample))
9 for (s in seq_along(chain_iter_sample)) { # For each iteration s:
10 if (!s %% 50) print(s)
11 ## (1) Draw one value from p(T);
12 pi_samps_s <- filter(pi_samps, chain_iter == chain_iter_sample[s])
13 pop_s <- svydesign(~1, weights = ~value, data = pi_samps_s)
14 T_s <- create_targets(subset(pop_s, Period == 1946), ~SOUTH * BLACK * PHONE)
15 ## (2a) Option A: Sample from parametric approximation to p(theta | T_s).
16 ## (i) Estimate theta_s and Cov(theta_s) conditional on T_s
17 ds_s <- calibrate(design = aipo0380_srs,
18 formula = ~SOUTH * BLACK * PHONE,
19 population = T_s,
20 calfun = "raking")
21 stat_s <- svymean(~PID3, ds_s, na.rm = TRUE)
22 ## (ii) Sample \tilde{theta_s} from MV(\hat{theta_s}, \hat{Cov(theta_s)})
23 est_s <- MASS::mvrnorm(n = 1, mu = as.numeric(stat_s), Sigma = vcov(stat_s))
24 est_samps[[s]] <- est_s
25 ## (2b) Option B: Use bootstrap.
26 boot_s <- svymean(~PID3,
27 as.svrepdesign(ds_s, type = "bootstrap", replicates = 1),
28 na.rm = TRUE, return.replicates = TRUE)
29 boot_samps[[s]] <- as.numeric(boot_s$replicates)
30 names(boot_samps[[s]]) <- names(boot_s$mean)
31 }
32
33 ## parametric MOC
34 names(est_samps) <- chain_iter_sample
35 est_df <- as.data.frame(est_samps)
36 ## bootstrap MOC
37 names(boot_samps) <- chain_iter_sample
38 moc_boot_df <- as.data.frame(boot_samps)
39
40 aipo0380_dei46_boot <-
41 as.svrepdesign(aipo0380_dei46, "bootstrap", replicates = 1000)
42
43 tibble(PID = levels(aipo0380$PID3),
44 orig_se = sqrt(diag(vcov(svymean(~PID3, aipo0380_dei46, na.rm = TRUE)))),
45 moc_par_se = apply(est_df, 1, sd),
46 orig_boot_se = sqrt(diag(vcov(svymean(~PID3, aipo0380_dei46_boot,
47 na.rm = TRUE)))),
48 moc_boot_se = apply(moc_boot_df, 1, sd))
49 ### In this case, because the uncertainty in the targets is so small,
50 ### propagating the uncertainty barely affects the estimated standard errors.
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4 Application to Contemporary Election Surveys
This section and the one that follows illustrate the workflow we have described
in two empirical applications: a telephone-based pre-election survey from 2016
that employed random digit dialing (RDD) and face-to-face opinion polls from
the 1930s–1950s in which respondents were selected using quota sampling.
Despite the gap in time separating these surveys and the methodological differ-
ences between them, they present a surprisingly similar set of problems for the
survey analyst. These applications are designed to highlight the general tasks
and decisions entailed by target and weight estimation and also to illustrate
(using R code) how in practice to implement the methods we have described in
the preceding sections.

∗ ∗ ∗

Elections in 2016 were not kind to pollsters, who suffered several embar-
rassing failures. In the United Kingdom, opinion polls taken just before a
2016 referendum on the European Union systematically underestimated sup-
port for leaving the union, with most point predictions suggesting erroneously
that “Remain” would prevail (British Polling Council 2016). Just a few months
later, Donald Trump defiedmost poll-based forecasts by defeating Hillary Clin-
ton in the US presidential election (Kennedy et al. 2018). These high-profile
mistakes, though understandable given the closeness of the contests involved,
highlight the continuing challenges of polling in the twenty-first century.
This section explores adjustment weighting’s potential for improving polit-

ical polling. Of course, in this era of low response rates, nearly all survey
organizations use some sort of weighting. The question, therefore, is not
whether to weight but how to do so. As we demonstrate, the choice of exactly
how to weight can greatly affect the accuracy of the results. Indeed, weight-
ing is by no means guaranteed to yield better estimates. We illustrate this with
a retrospective analysis of a survey fielded shortly before the 2016 US presi-
dential election. This exercise is unfair in the sense that it takes advantage of
information about nonresponse and other problems that were not fully under-
stood before the election. It should thus be taken not so much as criticism of
pollsters’ performance in 2016 as an illustration of how the combination of
auxiliary information and substantive knowledge can improve public opinion
polling.

4.1 Retrospective Adjustment of a Pre-Election Survey
In a comprehensive review of polling in the 2016 election, Kennedy et al.
(2018) attribute polls’ systematic underestimation of Trump’s support to three
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major factors: (1) failure to adjust for the overrepresentation of college-
educated whites; (2) a late break towards Trump among undecided voters; and,
less certainly, (3) misspecification of likely-voter models. Although the sec-
ond and third factors are undeniably consequential for prospective analysis,
we assume them away in this analysis by defining the target population as the
actual 2016 electorate, which of course was not known before the election. We
focus instead on the first factor, which resulted from the fact that most pollsters
did not weight their samples by education, a strong predictor of both vote choice
and nonresponse.With the benefit of hindsight, can this knowledge improve the
(retrospective) predictive accuracy of pre-election surveys?

4.1.1 Survey Data

To investigate this question, we analyze a survey fielded by the Pew Research
Center, a well-regarded nonpartisan survey organization, and released about a
week before the 2016 presidential election (Pew Research Center 2016). The
survey was conducted by telephone, with respondents sampled using RDD and
then screened for eligibility among cell phone users. A total of 2,583 telephone
interviews were completed, but after removing respondents who indicated that
theywould definitely not vote, wewere left with a sample of 2,074 respondents.
As the Pew dataset does not include design weights, we treat the survey as a
simple random sample (SRS) from the universe of possible voters.
The outcome of interest in this survey is respondents’ intended presiden-

tial vote, defined to include those who “leaned” towards one candidate. In the
unweighted sample, 49.6% of respondents favored Clinton and 44.3% favored
Trump. The survey thus gave Clinton a margin of 5.6% of the major-party vote
(SE = 2.3%), which was more than 3 percentage points higher than her actual
margin of 2.2% (the dashed line in Figure 4.1). The survey also contains data
on five auxiliary variables: age, gender, race, region, and educational attain-
ment. We recoded these variables into the categories shown in Table 4.1, the
third column of which reports the variables’ unweighted distribution in the Pew
sample. Since these variables are at least somewhat predictive of nonresponse
and vote choice, they are potentially useful for increasing the accuracy of the
survey-based estimate.

4.1.2 Target Population and Auxiliary Information

As noted above, we define the target population as those who voted in the 2016
presidential election. In an actual forecast, the characteristics of this popula-
tion would have to be estimated based on a likely-voter model and data from
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the voter file and surveys such as the American Community Survey (ACS).
Here, to simplify the analysis, we take advantage of the auxiliary information
contained in the post-election wave of the 2016 Cooperative Congressional
Election Study (CCES). We assume that the set of CCES respondents who
said they “definitely voted” in the 2016 general election is, once weighted by
the CCES’s own adjustment weights, a representative sample from the target
population. In addition to having a much larger sample size than Pew (44,769
usable cases vs. 2,074), the CCES estimate of Clinton’s popular vote margin
is very close to the true margin, both nationally (Figure 4.1) and within each
state.
The CCES contains data on each of the five auxiliary variables mentioned

in Section 4.1.1: gender, age, race, region, and education. Pew and the CCES
appear to define and code these variables identically. Nevertheless, marginal
distributions of the auxiliary variables do exhibit some substantial differences
between the two data sources, as Table 4.1 shows. Particularly concerning is
that the Pew sample is younger than the CCES and more highly educated.
Adjusting for these discrepancies may have a substantial effect on election
forecasts.

4.1.3 Auxiliary Vector and Population Targets

Even with just five auxiliary variables, we still face a number of important
choices in deciding how exactly to calibrate the sample. One choice, which
is relatively unimportant, is which distance metric to use. In this example, we
use the chi-square distance, which results in linear weighting. By contrast, the
choice of how to specify the auxiliary vector zzzi is typically much more con-
sequential. As noted in Section 2.1, the effectiveness of a given specification
of the auxiliary vector depends on how well it predicts both the outcome yi
and the response probability ρi. If yi and ρi depend on the interaction of two
or more auxiliary variables, then ideally zzzi should include this interaction. In
most survey samples, however, the inclusion of all important interactions, not
to mention full poststratification, results in small or even empty cells. To avoid
this, the survey analyst can either drop auxiliary variables, drop interactions
among them, or coarsen the variables by collapsing categories.
Of the many possible specifications of the auxiliary vector and population

targets, we compare the following four:

1. The marginal distributions of age, gender, race, and region.
2. The marginal distributions of age, gender, race, region, and education.
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3. The joint distribution of age (coarsened), gender, race, region, and education
(coarsened).

4. The marginal distributions of age, gender, and the interaction of race and
region, with region further interacted with education among whites only.

Specification (1) provides a baseline for the impact of weighting when only
basic demographic targets are used. In some scenarios, such as when auxiliary
information is derived from a voter file, these may be the only auxiliary vari-
ables available. Specification (2) adds education, which we now know was a
key variable missing from many 2016 election polls.
In contrast to the first two specifications, specification (3) contains the joint

rather than marginal distributions of the auxiliary variables. This leads to post-
stratification, a special case of linear weighting. However, as commonly hap-
pens in poststratification, some of the 768 age-gender-race-region-education
cells are empty in the Pew sample. We therefore coarsened both age and educa-
tion by collapsing them into three-category variables.23 Even so, there remained
265 empty cells, most with very small population sizes, which we forced the
poststratification function to ignore.
Finally, specification (4) employs an alternative solution to the problem of

empty cells. Rather than coarsening (or dropping) variables, it includes a mix
of marginal and joint distributions. The interactions included are based on sub-
stantive knowledge of the survey outcome and nonresponse mechanism, some
of which we learned only after the election. Post-election analyses have empha-
sized the distinctiveness of low-education whites, particularly in Midwestern
states. We therefore weight white respondents by both education and region but
weight non-white respondents by region only.

4.1.4 Comparison of Results

Calibrating the Pew sample to the four sets of population targets yields four
different sets of weights (all normalized to have a mean of 1). The weights in
set (1) are the least variable, with a design effect due to weighting (deffKish)
of 1.1 and a maximum weight of 2. Sets (2), (3), and (4) have deffKish values
around 1.4 and maximums of 3, 3, and 8 respectively. These values of deffKish
are below the conventional threshold of 1.5 (see Section 2.4), and as we will
see, the estimated variances of the weighted and unweighted samples differ
even less than their deffKish values would suggest.

23 For age, we collapsed everyone under the age of fifty-one. For education, we collapsed every-
one without a college degree into a “no college” category and everyone with an associate’s or
bachelor’s degree into a “college” category. Other categories were left as listed in Table 4.1.
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Set (2), which is calibrated to the full set of education categories, exhibits a
distinctive feature of linear weighting: several of the respondents are assigned
negative weights. Most of the negatively weighted respondents have postgrad-
uate degrees, an attribute that is highly overrepresented in the unweighted Pew
sample (see Table 4.1). Although negative weights pose no formal problems
for calibration, they are often seen as undesirable for general dissemination
because some estimators require positive weights. (If positive weights are
required, entropy weighting should be used instead of linear weighting.)
As Table 4.1 indicates, weighting brings Pew sample into rough congruence

with the auxiliary variables’ marginal distributions in the CCES. In particular,
the weighted samples are younger, more female, more black, and less edu-
cated, with two exceptions. Unsurprisingly, calibration using auxiliary vector
(1), which does not include education, does not bring the Pew sample any closer
to the CCES on this variable. In addition, due to the collapsing of categories
and empty cells in the Pew sample, calibrating (i.e., poststratifying) using aux-
iliary vector (3) does not quite match the CCES targets, especially on age and
education.
The estimates from the different weighting schemes are compared in Fig-

ure 4.1. The dashed line at 2.3% in this plot indicates Clinton’s actual popular
margin over Trump (as a percentage of the major-party vote). As noted in Sec-
tion 4.1.2., the CCES estimate of 2.6% (SE = 0.7%) is very close to the true
value. By contrast, the unweighted Pew estimate (Pew 0) of 5.6% (SE = 2.3%)
overstates Clinton’s support by 3.3 percentage points, though because it is much
less precise its 95% confidence interval still includes the true value. The same
cannot be said when the survey is weighted to match marginals other than edu-
cation (Pew 1), which overestimates Clinton’smargin by 10 points (SE = 2.2%).
This illustrates the important point that if the auxiliary vector is not well cho-
sen, weighting can increase rather than decrease bias. Contrary to its deffKish
value of 1.1, however, its estimated standard error suggests that weighting by
set (1) actually decreases rather than increases variance.
As Figure 4.1 shows, the other three sets of weights (Pew 2, Pew 3, and

Pew 4) yield much more accurate point estimates than non-education weights
(Pew 1). All, however, improve only very slightly over the unweighted esti-
mate (Pew 0), while also increasing the estimates’ variance by a small amount
(though not as much as their deffKish values imply). Nor does including interac-
tions in the auxiliary vector make much difference, as Pew 2, which is weighted
marginal targets only, does about as well as Pew 3 and Pew 4. In sum, calibrat-
ing with an auxiliary vector that omits education increases bias markedly while
including education - whether interacted with other variables or not - decreases
bias, but only slightly.
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Table 4.1 Auxiliary variable distributions in the targets (CCES) and sample
(Pew). Values indicate the percent of observations in the category. “Pew 0” =
unweighted; “Pew 1” = calibrated to marginals other than education; “Pew 2”
= calibrated to all marginals; “Pew 3” = (partially) poststratified; “Pew 4” =
calibrated to mix of marginals and interactions, including region × education

among whites.

Margin CCES Pew 0 Pew 1 Pew 2 Pew 3 Pew 4 Variable

18 to 35 28.8 19 28.8 28.8 24.5 28.8 age
36 to 50 21.3 20.9 21.3 21.3 25.7 21.3 age
51 to 64 29.8 31.8 29.8 29.8 29.8 29.8 age
65+ 20.1 28.4 20.1 20.1 20 20.1 age
Female 50.8 47.3 50.8 50.8 50.8 50.8 female
Male 49.2 52.7 49.2 49.2 49.2 49.2 female
Black 11.8 8.9 11.8 11.8 11.7 11.8 race
Hispanic 6.5 7.6 6.5 6.5 6.5 6.5 race
Other 6.8 7.1 6.8 6.8 6.8 6.8 race
White 74.9 76.4 74.9 74.9 75 74.9 race
Midwest 23.4 22.3 23.4 23.4 23.4 23.4 region
Northeast 19.7 18.2 19.7 19.7 19.7 19.7 region
South 35.5 37.9 35.5 35.5 35.5 35.5 region
West 21.4 21.6 21.4 21.4 21.4 21.4 region
No HS 6.8 2.8 2.5 6.8 3.6 5.8 educ
High school
graduate 30.6 19.7 19.6 30.6 28.6 28.1 educ

Some college 23 15.7 15.9 23 23.3 21.9 educ
2-year 10.6 11.3 11.4 10.6 9.3 11 educ
4-year 18.7 28.6 28.9 18.7 22.7 21 educ
Post-grad 10.4 21.9 21.6 10.4 12.6 12.2 educ

4.2 Discussion
The analysis in this section has been unrealistic in the sense that it takes advan-
tage of knowledge – specifically, that the undersampling of low-education
whites caused surveys to underestimate Trump’s support – that was not fully
apparent when the survey in question was conducted. Nevertheless, it high-
lights several practical lessons for applied survey researchers. Most fundamen-
tally, this example shows that even the highest-quality surveys, such as those
conducted by Pew, can should be improved with adjustment weighting, though
gains may be limited. At the same time, the results for specification (1) show
that weighting is by no means guaranteed to make estimates more accurate.
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Figure 4.1 Comparison of estimates for the 2016 US presidential election.
Clinton’s true margin over Trump is indicated by the dashed line at 2.3%.
“CCES” = CCES estimate; “Pew 0” = unweighted; “Pew 1” = calibrated to
marginals other than education; “Pew 2” = calibrated to all marginals; “Pew
3” = partially poststratified; “Pew 4” = calibrated to mix of marginals and

interactions, including region × education among whites.

Successful weighting requires powerful auxiliary variables, in this case educa-
tion. Getting the functional form of the relationships between these variables
and y and ρ exactly right (i.e., by including the proper interactions), though
in some contexts critical, is in this analysis a second-order concern. Finally,
in some cases weighting slightly increased the estimators’ variance. For all but
specification (1), the reduction in bias more than compensated for the increased
variance, but it is still worth noting that the differences in (squared) bias among
the final three specifications pale relative to the variance of the estimates. There
is, in short, only so much that can be learned from a survey sample of this size.

4.3 Example Code
The Code Ocean capsule for this section is published at https://doi.org/
10.24433/CO.0892243.v1.

Listing 4.1 Setup
1 ### Packages
2 library(tidyverse) # for useful utilities
3 library(survey) # for analyzing complex surveys
4

https://doi.org/10.24433/CO.0892243.v1
https://doi.org/10.24433/CO.0892243.v1
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5 ### Function for creating targets from auxiliary information and formula
6 create_targets <- function (target_design, target_formula) {
7 target_mf <- model.frame(target_formula, model.frame(target_design))
8 target_mm <- model.matrix(target_formula, target_mf)
9 wts <- weights(target_design)
10 colSums(target_mm * wts) / sum(wts)
11 }

Listing 4.2 Load unweighted survey data (Pew) and summarize key variables
1 ### Load
2 pew <- readRDS("data/pew.rds")
3
4 ### Make survey design
5 pew_srs <- svydesign(ids = ~1, weights = ~1, data = pew)
6
7 ### Unweighted survey estimates of presidential vote
8 svymean(~recode_vote_2016, design = pew_srs)
9 vote_contrast <- quote((recode_vote_2016Democrat - recode_vote_2016Republican) /
10 (recode_vote_2016Democrat + recode_vote_2016Republican))
11 svycontrast(svymean(~recode_vote_2016, pew_srs), vote_contrast)
12
13 ### Auxiliary variables
14 svymean(~recode_female, design = pew_srs)
15 svymean(~recode_age_bucket, design = pew_srs)
16 svymean(~recode_race, design = pew_srs)
17 svymean(~recode_region, design = pew_srs)
18 svymean(~recode_educ, design = pew_srs)

Listing 4.3 Load auxiliary information (CCES) and summarize key variables
1 ### Load
2 cces <- readRDS("data/cces.rds")
3
4 ### Drop invalid cases
5 cces <- cces %>%
6 filter((CC16_401 == "I definitely voted in the General Election.") &
7 !is.na(commonweight_vv_post))
8
9 ### Make survey design
10 cces_awt <- svydesign(ids = ~1, weights = ~commonweight_vv_post, data = cces)
11
12 ### Presidential vote estimates
13 #### National
14 svymean(~recode_vote_2016, design = cces_awt, na.rm = TRUE)
15 svycontrast(svymean(~recode_vote_2016, cces_awt, na.rm = TRUE), vote_contrast)
16 #### State
17 svyby(~I(as.numeric(recode_vote_2016 == "Democrat")), ~recode_inputstate,
18 design = cces_awt, svymean, na.rm = TRUE, keep.var = FALSE)
19
20 ### Auxiliary variables
21 svymean(~recode_female, design = cces_awt)
22 svymean(~recode_age_bucket, design = cces_awt)
23 svymean(~recode_race, design = cces_awt)
24 svymean(~recode_region, design = cces_awt)
25 svymean(~recode_educ, design = cces_awt)

Listing 4.4 Create auxiliary vectors and population targets
1 ### Formulas for auxiliary vector
2
3 #### (1) Marginal distributions of age, female, race, and region
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4 formula_1 <- ~recode_age_bucket + recode_female + recode_race + recode_region
5 #### (2) Marginal distributions of age, female, race, region, and education
6 formula_2 <- ~recode_age_bucket + recode_female + recode_race + recode_region +
7 recode_educ
8 #### (3) Joint distribution of age (coarsened), female, race, region, and
9 #### education (coarsened)
10 formula_3 <- ~recode_age_3way * recode_female * recode_race *
11 recode_region * recode_educ_3way
12 table(cces$recode_age_3way, cces$recode_age_bucket)
13 table(cces$recode_educ_3way, cces$recode_educ)
14 #### (4) Marginal distributions of age, female, and race and, among whites,
15 #### the joint distribution of region and education
16 #### (recode_race_educ_reg = race * educ * reg if race == "white" and
17 #### race * reg otherwise)
18 formula_4 <- ~recode_age_bucket + recode_female + recode_race_educ_reg
19
20 ### Population targets
21 targets_1 <- create_targets(cces_awt, formula_1)
22 targets_2 <- create_targets(cces_awt, formula_2)
23 targets_3 <- create_targets(cces_awt, formula_3) # will have to modify below
24 targets_4 <- create_targets(cces_awt, formula_4)

Listing 4.5 Create weighted survey designs
1 #### (1)
2 pew_lwt_1 <- calibrate(design = pew_srs,
3 formula = formula_1,
4 population = targets_1,
5 calfun = "linear")
6
7 #### (2)
8 pew_lwt_2 <- calibrate(design = pew_srs,
9 formula = formula_2,
10 population = targets_2,
11 calfun = "linear")
12
13 #### (3)
14 ##### Can't compute below because some cells are empty.
15 try(pew_lwt_3 <- calibrate(design = pew_srs,
16 formula = formula_3,
17 population = targets_3,
18 calfun = "linear"),
19 silent = TRUE)
20 ##### So instead we use the `postStratify` function with `partial = TRUE`, which
21 ##### ignores empty cells.
22 formula_3_ps <- as.formula(str_replace_all(formula_3, "\\*", "+"))
23 targets_3_ps <- svytable(formula = formula_3_ps, design = cces_awt)
24 sum(svytable(formula_3_ps, pew_srs) == 0) # 244 empty cells
25 pew_ps_3 <- postStratify(design = pew_srs,
26 strata = formula_3_ps,
27 population = targets_3_ps,
28 partial = TRUE) # ignores empty cells
29
30 #### (4)
31 pew_lwt_4 <- calibrate(design = pew_srs,
32 formula = formula_4,
33 population = targets_4,
34 calfun = "linear")

Listing 4.6 Examine weights
1 #### Summarize and compare
2 wts <- data.frame(wt1 = weights(pew_lwt_1) / mean(weights(pew_lwt_1)),
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3 wt2 = weights(pew_lwt_2) / mean(weights(pew_lwt_2)),
4 wt3 = weights(pew_ps_3) / mean(weights(pew_ps_3)),
5 wt4 = weights(pew_lwt_4) / mean(weights(pew_lwt_4)))
6
7 sapply(wts, summary) # ave(wts) = 1
8 sapply(wts, var) # Kish deff = 1 + var(wts) / ave(wts)^2
9
10 #### Boxplots
11 wts %>%
12 pivot_longer(everything()) %>%
13 ggplot(aes(x = name, y = value)) +
14 geom_boxplot()
15
16 #### Negative weights
17 pew_lwt_2$variables %>%
18 filter(weights(pew_lwt_2) < 0) %>%
19 group_by(recode_race_educ) %>%
20 summarise(count = n())
21 pew_lwt_4$variables %>%
22 filter(weights(pew_lwt_4) < 0) %>%
23 group_by(recode_race_educ) %>%
24 summarise(count = n())

Listing 4.7 Compare marginal distributions of auxiliary variables
1 aux_comp <- data.frame(
2 cces = svymean(formula_2, design = cces_awt),
3 pew0 = svymean(formula_2, design = pew_srs),
4 pew1 = svymean(formula_2, design = pew_lwt_1),
5 pew2 = svymean(formula_2, design = pew_lwt_2),
6 pew3 = svymean(formula_2, design = pew_ps_3),
7 pew4 = svymean(formula_2, design = pew_lwt_4))
8 print(aux_comp, digits = 2)

Listing 4.8 Compare estimates of Clinton-Trump margin
1 ### Actual results
2 pres <- readRDS("data/election.rds")
3
4 natl_margin <- pres %>%
5 summarise(margin = (sum(demtotal) - sum(reptotal)) /
6 (sum(demtotal) + sum(reptotal))) %>%
7 as.numeric()
8 natl_margin
9
10 ### Compare estimates
11 comp_df <- data.frame(
12 CCES = svycontrast(svymean(~recode_vote_2016, cces_awt, na.rm = TRUE),
13 vote_contrast),
14 Pew_0 = svycontrast(svymean(~recode_vote_2016, pew_srs, na.rm = TRUE),
15 vote_contrast),
16 Pew_1 = svycontrast(svymean(~recode_vote_2016, pew_lwt_1, na.rm = TRUE),
17 vote_contrast),
18 Pew_2 = svycontrast(svymean(~recode_vote_2016, pew_lwt_2, na.rm = TRUE),
19 vote_contrast),
20 Pew_3 = svycontrast(svymean(~recode_vote_2016, pew_ps_3, na.rm = TRUE),
21 vote_contrast),
22 Pew_4 = svycontrast(svymean(~recode_vote_2016, pew_lwt_4, na.rm = TRUE),
23 vote_contrast)) %>%
24 pivot_longer(cols = everything(),
25 names_to = c("source", ".value"),
26 names_pattern = "(.*)\\.(.*)") %>%
27 rename(est = nlcon) %>%
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28 mutate(err = est - natl_margin,
29 source = str_replace(source, "_", " "))
30 comp_df

5 Application to Quota-Sampled Opinion Polls
In the mid-1930s, George Gallup, Elmo Roper, and other pioneering pollsters
began surveying the American public on a regular basis. By the time Univer-
sity of Michigan researchers fielded the first full-scale national election study
in 1952, nonacademic survey organizations had conducted some 500 national
polls, nearly all of which have been archived by the Roper Center for Pub-
lic Opinion Research (https://ropercenter.cornell.edu). The majority
of the archived polls were conducted by Gallup’s American Institute of Pub-
lic Opinion (AIPO), but the archive also includes numerous polls by the three
other major survey organizations of this era: Roper’s eponymous firm, Hadley
Cantril’s Office of Public Opinion Research (OPOR), and the National Opin-
ion Research Council (NORC). These survey data contain a treasure trove of
information on the attitudes of the American public during a critical era that
stretched from the waning years of the Great Depression to the first stirrings of
the civil rights movement.
Yet despite its value, this unique data source has remained largely untapped

by political scientists and other scholars, primarily because analyzing the data
is far from straightforward. Though archived by the Roper Center, many of
the raw datasets were not touched for decades and are difficult to read and
manipulate. As a consequence, the individual-level data were mostly ignored
by scholars for many years.24 Recently, however, Adam Berinsky and Eric
Schickler, with funding from the National Science Foundation, have led a col-
laborative effort with the Roper Center to organize, recode, and archive the
polls into usable datasets (Berinsky and Schickler 2011). Transforming the data
into a suitable format is only half the battle, however; a second barrier to their
widespread use is that the poll samples themselves are not representative of the
American public.
This unrepresentativeness stems from two sources, one intentional and one

unintentional. First, since the purpose of many of the polls was predicting elec-
tions, the poll samples were often intended to be representative of voters, not the
public at large. Second, only after the polling debacle of the 1948 election did
survey firms begin gradually transitioning to probability sampling (Mosteller

24 Exceptions to this neglect include Verba and Schlozman (1977), Caldeira (1987), Weatherford
and Sergeyev (2000), Baum and Kernell (2001).

https://ropercenter.cornell.edu
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et al. 1949), a process essentially complete by 1952. Before then, all com-
mercial polls selected survey respondents purposively using quota sampling.
Quota-controlled samples are designed to be representative of the target popu-
lation on certain observable characteristics, but because interviewers exercise
discretion over whom to interview within quota categories, there is no guaran-
tee that the resulting samples will be representative on noncontrolled attributes.
As a result of these two sources of unrepresentativeness, poll samples before
the 1950s exhibited marked racial, class, regional, and gender biases relative
to the American public (Berinsky 2006).
To address these biases, Berinsky (2006) proposed weighting samples to

match known population targets, an approach implemented by Berinsky et al.
(2011) for polls conducted between 1936 and 1945. The weights created by this
team were a marked improvement over the raw samples, but they nevertheless
had several shortcomings. Owing to the limitations of the population data col-
lected by Berinsky et al. and of the weighting methodology they employed, the
weights they created did not make optimal use of all auxiliary information. In
particular, the weights were based on static population data from only a single
census (1940). Further, because Berinsky et al. relied mainly on poststratifi-
cation, they could not incorporate all auxiliary variables into a given set of
weights. They thus instead created separate weight sets based, respectively, on
occupation, education, and phone ownership.
In this section, we describe a new approach to weighting quota-sampled polls

that improves on that of Berinsky et al. in four main respects. First, whereas the
Berinsky et al. weights extend only through 1945, our weights cover the entire
1936–1952 period, thus fully bridging the gap between the eras of quota sam-
pling and probability sampling. Second, the weights we create are dynamic
rather than static, in that they are designed to yield samples representative of
the US population as it evolved over this period. Third, at each point in time
we rely on more accurate and detailed auxiliary information on the US popu-
lation, incorporating demographic variables beyond those used by Berinsky
et al. and more detailed information on the joint distribution of those vari-
ables. Fourth, we use a more flexible weighting method, calibration weighting,
a generalization of better-known techniques like poststratification that enables
us to make more efficient use of auxiliary information. Using this improved
methodology, we create weights that not only cover nearly every public opin-
ion poll conducted between 1936 and the first quarter of 1953 but also are more
effective than the existing weights at reducing the sampling and nonresponse
biases in the raw poll samples. While no panacea for the issues inherent in non-
probability samples, these weights nevertheless enable scholars to make more
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credible inferences about public opinion in a critical era before the adoption of
probability sampling.

5.1 Auxiliary Variables and Dynamic Population Targets
The key to reducing nonresponse bias is to take advantage of auxiliary informa-
tion on survey variables’ distribution in the population of interest, by collecting
more comprehensive and accurate information than previously available on the
evolving composition of the US adult population. We did so by, first, collect-
ing population data on additional auxiliary variables beyond those Berinsky
et al. (2011) used to create weights for polls conducted in 1936–1945. Sec-
ond, whereas Berinsky et al.’s weights were based on only a single US Census
(1940), our new weights take advantage of data collected at many points in
time.With a specially developed interpolationmodel, we used these data to esti-
mate the demographic composition of the US population in each year between
1936 and 1953. These detailed demographic snapshots of the United States pro-
vided the population targets we then used to generate survey weights for each
poll.
The auxiliary variables Berinsky et al. used to create weights for the

1936–1945 polls were Region, Black, Female, and one of either Education,
Professional, or Phone. Except for phone ownership, which was calculated
from AT&T corporate records, the population targets for these variables were
derived from Integrated Public Use Microdata Series (IPUMS) samples of the
1940 US Census (Ruggles et al. 2010). To create our revised weights, we col-
lected population data on four additional auxiliary variables – State, Farm,
Urban, and Age – and did so across multiple years. Gathering population data
for various points in time is important, especially given our longer time span,
because in some respects the demographic composition of the United States
changed markedly over this period. The percentage of American adults with no
more than a grade school education, for example, fell from 60% in 1936 to 45%
in 1952. There was also substantial change in the joint distribution of certain
demographic variables, such as Black and Region. In 1936, for example, only
33% of African Americans lived outside the former Confederacy, but by 1952
fully 44% did. Incorporating such changes into our targets helps ensure that the
weighted samples accurately reflect the evolving demographic composition of
the US public.
Table 5.1 describes the nine auxiliary variables we used to create the new

weights. The column labeled “Type” indicates each variable’s role in the
sampling scheme used by Gallup’s AIPO. (Polls conducted by other organi-
zations generally included a subset of these variables.) As Berinsky (2006)
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Table 5.1 Auxiliary variables.
Name Levels Type Source of Population Data

State lower-48 states central IPUMS (1930, 1940, 1950, 1960)
Farm non-farm/farm central IPUMS (1930, 1940, 1950, 1960)
Urban rural/urban central IPUMS (1930, 1940),

census reports (1950, 1960)
Female male/female hard quota IPUMS (1930, 1940, 1950, 1960)
Age 21–34/35–49/50+ soft quota IPUMS (1930, 1940, 1950, 1960)
Professional non-prof./prof. soft quota IPUMS (1930, 1940, 1950, 1960)
Black non-black/black implicit quota IPUMS (1930, 1940, 1950, 1960)
Education elem./some HS/ no quota IPUMS (1940, 1960),

HS grad/college+ retrospective extrapolation (HS 1930)
Phone no phone/phone no quota IPUMS (1960),

AT&T (1930, 1935, 1937, 1940, 1945),
Hist. Stats. of U.S. (1936–1953)

describes, the sample distributions of the variables State, Farm, and Urban
were determined by the AIPO central office’s purposive selection of inter-
viewing locations. AIPO interviewers were given a hard quota for the gender
breakdown in their sample, while for Age and Professional they were encour-
aged but not required to get “a good spread.” A similarly soft, if less explicit,
quota was imposed for black respondents, who especially in the South were
interviewed only “as encountered,” which is to say, rarely. Aside from a general
admonition to distribute their interviews across class lines, there was no quota
for Education or Phone, both strong markers of socioeconomic status. Except
for Education, which first becomes available in 1943, all of these variables
were included in the vast majority of AIPO surveys.
As Table 5.1 indicates, data on the population distributions of the auxiliary

variablesmust be derived from a variety of sources. Themost important of these
data sources are IPUMS samples of individual-level US census records, which
are especially useful because they (unlike aggregate census reports) reveal the
joint distribution of the auxiliary variables. Unfortunately, the IPUMS datasets
do not include every census variable in every year. For privacy reasons, the
1950 and 1960 IPUMS samples do not include Urban, so for these years we
must rely on US census reports on urban population by state. Similarly, Edu-
cation is only available in the 1940 and 1960 IPUMS. To establish educational
trends before 1940, we rely on Folger and Nam (1964), who estimate the
national proportion of high school graduates in 1930 by extrapolating backward
from later censuses.
The US Census did not ask about telephone ownership until 1960, so only

in that year are data available on its joint distribution with other variables. The
AT&T corporate archives, however, contain information on the number of res-
idential telephone lines in each state for several years between 1930 and 1945.
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The census also estimated the proportion of households in the United States
with a telephone in each year during this period, figures reported in Historical
Statistics of the United States (Field 2006). By combining all of this informa-
tion with (interpolated) decennial census data on the number of households in
each state, we derived state-level estimates of the proportion of citizens with a
phone in their household.
These raw data provide a rich but incomplete picture of the US population.

Most obviously, the data are available only every few (usually ten) years. Tar-
gets for intervening years must therefore be estimated based on some model
of demographic change. If data on the full joint distribution of auxiliary vari-
ables were available in each census year, cell proportions in the intervening
years could be estimated through a simple interpolation model. Enns and Koch
(2013), for example, construct annual population targets for the years 1950–
2000 by linearly interpolating between the cell proportions in each decadal
IPUMS sample. Unfortunately, such a simple approach is not possible in
our case because IPUMS samples in different years include different sets of
auxiliary variables.
Nor would it be acceptable in this application to simply interpolate auxiliary

variables’ marginal distributions and then construct raking weights to match
the margins in each year. This application poses two related barriers to raking
on marginals only. First, matching the marginal population distribution of each
variable does not address nonresponse bias that results from the interaction
of two or more variables. An example of such an interaction is Gallup’s ten-
dency to over-sample citizens who were both phone owners and professionals.
Because response probabilities depended on the interaction of Phone and Pro-
fessional, Gallup polls weighted to match the marginal distributions of Phone
and Professional still tend to overestimate the phone ownership rate among
professionals by about 15 percentage points.
A second, more obvious problem with weighting to match marginal dis-

tributions only is that many polls from this period excluded Southern blacks
entirely. Thus, for these polls wemust change the target population from the US
voting-age population (VAP) to the subpopulation of all adults except South-
ern blacks. We refer to the latter subpopulation as the de facto voting-eligible
population (VEP) – that is, the subset of American adults who could potentially
vote – in reference to the fact that African Americans were effectively disen-
franchised in the former Confederacy at this time.25 We note, however, that

25 Although African Americans were legally entitled to vote under the Fifteenth Amendment,
the states of the former Confederacy used a variety of legal and extra-legal mechanisms to
effectively disfranchise their black citizens. There is no perfect dividing line between states
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constitutionally speaking Southern blacks were entitled to vote, and thus the
label “voting-eligible public” may suggest an overly rigid distinction between
the eligible electorate and the public as a whole.
It should be emphasized that simply changing the marginal targets for Black

would not adequately account for this change in the target population from the
VAP to the VEP. The targets for other auxiliary variables correlated with Black
must be changed as well, which requires knowing their joint distribution with
Black. For variables available in every IPUMS sample, the joint distribution
can be estimated by interpolating the cell proportions between census years,
but such a simple approach will not work for variables such as Phone, whose
joint distribution with most variables is known only for 1960.
This problem, which was illustrated in simple form in Section 3.1, is present

on a larger and more complex scale when we consider all nine auxiliary vari-
ables in Table 5.1. To address this problem comprehensively, we rely on the
dynamic ecological inference (EI) framework developed byCaughey andWang
(2019).26 Our goal is to estimate the yearly population proportions of all 27,648
cells defined by the complete cross-classification of the auxiliary variables in
Table 5.1.27 If we considered each year separately, we would face the usual
ecological inference problem that the interior cells cannot be estimated with-
out strong and often unwarranted modeling assumptions. A distinctive feature
of our application, however, is the availability of rich multivariate data at a few
points in time (i.e., census years). Assuming that variables’ conditional joint
distribution changes gradually over time, we can use years with a lot of data to
inform estimates for years with less data (or none at all).
As Section 3.3 discusses, Caughey and Wang’s approach uses a Bayesian

framework that combines a sampling model for the observed marginal data

where blacks could and could not vote, especially since black political mobilization increased
markedly over this period. Based on our reading of the scholarly literature, we believe that the
most principled division is between the former Confederacy –where black votingwas negligible
before 1944 – and the rest of the nation (following, e.g., Key 1949; Mickey 2015). Kentucky,
though classified as Southern by Gallup, did not substantially restrict black voting. The same
appears to hold, though less certainly, for Oklahoma, at least by the late 1930s (Bunche 1973).

26 For further details, see Caughey and Wang (2014).
27 Since there are extremely few farms in urban areas, we collapse Farm and Urban into a new

variable, Size, with three levels: farm, rural non-farm, and urban. This results in 48× 3× 2×
3× 2× 2× 4× 2 = 27,648 cells. To reduce the computational burden we estimated the cell
proportions in three stages and combined the estimates together. In the first stage, we estimated
the yearly population proportions of groups defined by the interaction of all the variables in
Table 5.1 except State, which was replaced by South. In the second stage, we did the same at
the state level but excluded Education and Age. The two sets of estimates were combined by
raking the full cell matrix to match both sets of partial estimates.
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with a transition model for the cell proportions’ temporal evolution. The esti-
mated cell proportions in a given year are informed both by data from that
year (if any) and by cell estimates from other years. The cell estimates satisfy
known constraints – for example, that in a given year the proportion of South-
ern blacks with a phone plus the proportion of Southern blacks without a phone
must equal the observed proportion of Southern blacks; but within these con-
straints, the cell estimates are also influenced by information from other years –
for example, the negative correlation between Black and Phone in the 1960
IPUMS data. In this sense, the Caughey-Wang model uses all available infor-
mation to inform estimates of the demographic composition of the population
at each point in time.
The dynamic EI model yields estimates of the population proportions of

27,648 demographic types in each year between 1930 and 1960. From this esti-
mate of fU (xxx), we can derive any population targets of interest, whether they
be marginal distributions (e.g., the proportion in each region) or joint distribu-
tions (e.g., the proportion of urban residents in each education category). As
we describe in the following section, these targets can then be used to cre-
ate weights that ensure that survey samples match the specified population
moments.

5.2 Creating Survey Weights
Before we can create weights, we need to specify an auxiliary vector zzzi and
corresponding population targets T̃xxx. Our selection of auxiliary vector relies
on a combination of background knowledge of the sampling process, statis-
tical analysis of survey outcomes and nonresponse, and consideration of the
important subpopulations. We know that intentional and unintentional biases
led polling organizations to undersample women, Southerners, African Ameri-
cans (especially in the South), and lower-class individuals. Statistical analyses
of response probabilities helped refine our understanding of the nonresponse
mechanism. We found, for example, that surveys undersampled women less in
the South than in the non-South and that the gender gap in voter turnout was
larger in the South. In other words, both nonresponse and turnout (a likely out-
come variable) depended on the interaction of region and gender. We therefore
made sure that the auxiliary vector included this interaction as well as others
we detected. Finally, since we anticipated that many users would be interested
in examining subpopulations defined by gender, class, and region, we priori-
tized interactions that define these domains of interest. Of course, the feasibility
of including these interactions was limited by the poll samples themselves:
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If no sampled individuals exhibited a given combination of attributes (e.g.,
black female farmer), then it was impossible to construct weights that match
the population in this respect. The weights we ultimately created reflect our
attempts to balance these various considerations.
We aimed to create general-purpose weights that applied analysts could use

for a wide variety of research questions, while also recognizing that the “best”
set of weights always depends on the goal of the analysis. We therefore created
four main sets of weights, which differ from each other in two respects: (1) the
target population to which they are calibrated and (2) the auxiliary vector on
which they are based. Since poll samples differ systematically across AIPO,
OPOR, and NORC, we also tailored our weighting schemes to each survey
organization. The weight sets are summarized in Table 5.2.
The first way that the weights differ is with respect to their target population.

For AIPO polls, the distinction is between weights calibrated to the voting-
age population (VAP) of all US adults over the age of twenty-one or to the
voting-eligible population (VEP) of all US adults except African Americans in
the former Confederacy. This distinction between VAP and VEP is a practical
concession to the fact that Gallup, aiming to produce samples representative of
the active electorate, undersampled Southern blacks so severely that in many
polls they are missing entirely. Since the VAP weights do not (and typically
cannot) interact South and Black, they implicitly allow non-Southern blacks
to “stand in” for the absent Southern blacks in estimates of national opinion.28

TheVEPweights avoid this assumption and are also typically less variable than
the VAP weights but at the expense of changing the population about which
inferences can be made. The problem of empty cells is even more extreme in
OPOR andNORC polls; moreover, these polls did not record respondents’ state
of residence. For these reasons, for these polls we created white public weights
that drop all blacks from the target population. For OPOR polls, we created
white public and VEP weights, and for NORC polls we created white public
and VAP weights.
In addition to differing with respect to target population, alternative weight-

ing sets also differed in the auxiliary vector used to calibrate them. What
we label “comparable” weights are based on the subset of auxiliary vari-
ables included in nearly all Gallup polls: Phone, Female, Region, Professional,
Black, and Size (a combination of Farm and Urban). Because they are based
on a single consistent auxiliary vector, the comparable weights ensure that

28 For evidence that this is often a reasonable assumption, see Schickler and Caughey (2011). To
avoid extreme weights, we do not create VAP weights for polls with fewer than twenty black
respondents.
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differences in estimates across polls are not the result of differences in the
weighting scheme.29 Although the comparable weights substantially increase
the representativeness of the poll samples (see Section 5.3), weights based on
Education do so even more effectively. Thus, for the approximately half of
Gallup polls that include this variable, all of which were fielded after 1942, we
also created “education” weights based on an auxiliary vector that includes not
only the variables used to create the comparable weights but also Education
and Age.30 Finally, for the relatively few polls with missing cells or auxiliary
variables, we still create the “best feasible” weights for that poll, except for a
few cases where it was impossible to create any weights at all. Unlike the com-
parable and education weights, the best feasible weights are based on a different
auxiliary vector in every poll (and thus are not summarized in Table 5.2).
For applied users, choosing which weights to use will often entail a trade-

off between maximizing comparability over time and reducing bias in a given
poll as much as possible. For most analyses, education weights will be the best
choice because they are the most effective at reducing the class bias in the
poll samples. However, if education weights are not available in a given poll,
or if one desires comparability with polls without education weights (e.g., for
over-time analyses), then comparable weights should be used instead. Only
when both comparable and education weights are unavailable should one rely
on the best feasible weights, which are neither as comparable across polls nor
as effective at reducing bias as the other weights.
Researchers should also carefully consider their population of interest. If

they wish to make inferences about the US public as a whole, then they should
use weights calibrated to that target population (e.g., WtPubComp or WtPubEd).
On the other hand, if they are interested in the eligible electorate (that is, exclud-
ing disfranchised Southern blacks), then VEPweights are preferable. Similarly,
if one wishes to examine subpopulations defined by some variable, it is best to
use weights that calibrate the interaction of that variable with all others (see
column 6 of Table 5.2). For example, if one is interested in estimating pub-
lic opinion in the non-South, one should use WtVotEd rather than WtPubEd
because the former ensures that all other auxiliary variables are calibrated
within values of South.

29 Of course, even with the auxiliary vector held constant, differences in estimates across polls
could reflect differences in the sampling process and/or nonresponse mechanism rather than
true changes in the population.

30 The education weights for NORC polls do not use Age as an auxiliary variable. Also, of the
more than 200 polls that contained Education, 24 could not be weighted using the auxiliary
vector summarized in Table 5.2. We continue to use the “Ed” suffix for these weight variables,
but we include a flag in the documentation for these polls indicating that their auxiliary vector
is not strictly identical to that of other education weights.



Table 5.2 Summary of survey weights.

Org. Weight Name Pop. Weight Type Auxiliary Variables Interacted Variables %Wtd.

AIPO WtPubComp Adults Comparable Phone, Professional, Female, Region, South,
Black, Size

Phone, Female 91%

... WtVotComp Voters Comparable Phone, Professional, Female, Region, South,
Black, Size

Phone, Female, South 91%

... WtPubEd Adults Education Phone, Professional, Female, Region, South,
Black, Size, Education, Age

Phone, Female, Education 46%

... WtVotEd Voters Education Phone, Professional, Female, Region, South,
Black, Size, Education, Age

Phone, Female, South, Educa-
tion

45%

OPOR WtVotComp Voters Comparable Phone, Professional, Female, Region, South,
Black, Size, Age

South 76%

... WtWhtComp Whites Comparable Phone, Professional, Female, Region, South,
Size, Age

Phone, Female, South 100%

... WtVotEd Voters Education Phone, Professional, Female, Region, South,
Black, Size, Education, Age

South 76%

... WtWhtEd Whites Education Phone, Professional, Female, Region, South,
Size, Education, Age

Phone, Female, South, Educa-
tion

100%

NORC WtPubEd Adults Education Female, Black, South, Size, Education Female, Education 100%
... WtWhtEd Whites Education Female, South, Size, Education Female, South, Education 100%
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Table 5.3 Population benchmarks and sample estimates (%).

Car Some Some Turnout Republican
(1948) High Sch+ College+

Unweighted 54.6 65.8 23.0 78.5 52.3
Comp Wts 51.9 62.9 20.4 75.3 49.2
Benchmark 49.4 49.5 12.4 56.4 48.4

5.3 Validation
The purpose of the weights we have created is to improve the representative-
ness of the poll samples. By construction, the weights will succeed in doing so
on auxiliary variables used to create the weights in the first place: Professional,
Female, Black, and so on. The real test of their performance, however, is their
ability to improve representativeness with respect to demographic and politi-
cal characteristics not used to create the weights. Moreover, the new weights
should improve representativeness not only relative to the unweighted samples
but also relative to the weights initially devised by Berinsky et al. (2011), which
incorporated less auxiliary information.
In this section, we validate the new comparable weights’ performance by

evaluating their ability to match five population benchmarks. The first of these
benchmarks is the percentage of adults who owned an automobile, which we
derived from a probability-sampled survey of consumer finances fielded in
1948 by the University of Michigan’s Survey Research Center (SRC).31 The
second and third benchmarks are the percentages of adults who had attended,
respectively, at least some high school and at least some college (education
weights, of course, match the benchmarks exactly). The fourth benchmark
is voter turnout, operationalized as the number of votes cast in the previous
presidential election as a percentage of the VAP. The fifth is the Republi-
can percentage of the two-party vote in the succeeding presidential election.
We compare these benchmarks to survey estimates derived from questions
on car ownership, education level, retrospective voting, and prospective vote
intention.
As a first cut, Table 5.3 compares unweighted andweighted sample estimates

to population benchmarks, averaging across all polls that included the bench-
mark variable for which comparable weights can be calculated.32 All of the

31 Economic Behavior Program, Survey Research Center, University of Michigan. 1948.
32 To ensure that these summary statistics are based on comparable samples, Table 5.3 does

not include estimates using the Berinsky-Schickler weights, which are not available for
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weighted estimates are calculated using comparable VAP weights except the
Republican estimate, which is based on comparable VEP weights. The table
makes two patterns clear. First, consistent with the socioeconomic bias in the
quota samples, the unweighted survey percentages are higher on average than
the corresponding population benchmarks. In the case of car ownership and
Republican presidential vote intention (columns 1 and 5), the unweighted esti-
mates are only 4–5 percentage points off. The biases for education and voter
turnout, however, are 2–4 times larger.33 Second, Table 5.3 also indicates that
weighting improves the accuracy of sample estimates for all five benchmark
variables, reducing the difference in averages on each variable by 3–4 percent-
age points. In the case of car ownership and Republican vote intention, this
is sufficient to nearly eliminate the bias in the poll samples.34 For the other
three variables, however, the new weights only eliminate a fraction of the bias.
This underscores the value of using education weights, which for comparability
were not used in this validation exercise, in the subset of polls that measured
respondents’ education level.
While it is reassuring that our new weights improve the representativeness

of the raw poll samples, a more stringent test is whether they improve on the
weights that Berinsky et al. (2011) created for polls fielded between 1936 and
1945. To evaluate this, we compare how close the new weights, old weights,
and unweighted samples get to population benchmarks for the variables exam-
ined in Table 5.3. For every variable except car ownership, we make these
comparisons for both the voting-age and voting-eligible population, using the
appropriate weights and benchmarks for each.35 The polls used in each com-
parison vary depending on the availability of the relevant benchmarks, survey
variables, and weights.

polls after 1945. Figure 5.1, which compares estimates within each poll, does include the
Berinsky-Schickler weights.

33 The bias in turnout, which is based on respondents’ self-report of whether they voted in the last
presidential election, almost certainly reflects over-reporting as well as sample selection bias.
Indeed, biases of similar magnitude can be found in probability samples such as the American
National Elections Study (Ansolabehere and Hersh 2012, 446).

34 If, instead, VAP rather than VEP weights are used to estimate prospective Republican vote,
the weighted estimates slightly overshoot the benchmark, averaging 1.4% under the ultimate
Republican percentage.

35 The “new weights” used in this comparison were the comparable weights for the voting-age
and voting-eligible publics (WtPubComp and WtVotComp, respectively). The corresponding “old
weights” were cell weights based on the auxiliary variables Professional, Black, Female, and
South. Voter turnout in the voting-eligible population was calculated by dividing VAP turnout
by the proportion of US adults who were not Southern blacks. For both the VAP and the VEP,
the benchmark for Republican vote intention was the Republican candidate’s actual two-party
share in the next presidential election.
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Figure 5.1 Improvement in matching out-of-sample benchmarks using the
new weights. Values less than 0 (dotted line) indicate that the new weights

improved the accuracy of estimates. The top row of panels compares the new
weights to the unweighted poll samples, and the bottom row compares the
new weights to the old weights. Each column corresponds to a different
population benchmark, for the voting-age population (VAP) and the

voting-eligible population (VEP, i.e., excluding Southern blacks). Circles
represent poll-specific differences in absolute error between the new weights
and either the unweighted samples or the old weights. Absolute error is the
absolute value of the difference between the population benchmark (e.g., the

percentage of adults who owned a car) and the corresponding sample
estimate. Diamonds indicate the average difference in absolute error, and the
box plots overlaid over the points indicate medians and interquartile intervals.

Figure 5.1 plots the results of these comparisons. The panels in the top row
compare the new weights and unweighted samples in terms of difference in
absolute error (DAE), and the bottom row does the same for the new weights
and old weights. In addition to plotting the DAE of each poll, the figure also
indicates the average DAE across polls as well as the 25th, 50th, and 75th
percentiles. Corroborating Table 5.3, the top row of Figure 5.1 indicates that
in a large majority of polls, using the new weights yields estimates closer to
the benchmarks than the unweighted estimates. The median reduction in error
across benchmarks ranges between 1 and 3 percentage points. The improve-
ment is least consistent for Republican vote intention, which is unsurprising
sincemost of the poll samples were specifically designed for the purpose of pre-
dicting election outcomes. In almost every case where the unweighted estimate
was closer to the benchmark, the new weights underpredicted Republican vote
share, an outcome to be expected if (as was probably the case) voters leaned
Republican relative to nonvoters.
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Looking now at the bottom row, we see a similar pattern of improvement
relative to the old weights, though smaller and less consistent than before.
Averaging across variables, the new weights typically reduce error by half a
percentage point relative to the old weights, though in the case of voter turnout
the improvements are occasionally much larger. In general, the improvement
is greater when weighting to the voting-eligible population than to the voting-
age population. In all eight comparisons, the new weights improve on the old
weights in a majority, and sometimes the vast majority, of polls. The variable
with the least improvement is again Republican vote intention, where in two
out of five available polls the old VEPweights yieldedmore accurate estimates.
This is because the new VEP weights sometimes overcorrect for the Republi-
can bias in the raw samples and thus end up underestimating the Republican
share of the actual electorate.
In sum, the new calibration weights yield weighted poll samples that are

much more representative of the target population than the unweighted sam-
ples, and for some variables the weighted samples recover external benchmarks
almost exactly. The new weights also generally improve over the Berin-
sky et al. (2011) weights, which incorporated less auxiliary information (and
are available only through 1945). Evaluating the new weights against exter-
nal benchmarks thus provides compelling validation of their effectiveness at
improving the representativeness of the poll samples. It should be emphasized
that the comparable weights do not incorporate information on education, the
most powerful indicator of socioeconomic status in the polls. The upper-class
bias in the unweighted samples can be further reduced by using education
weights in the polls for which these weights are available, a fact we illustrate
in the following section.

5.4 Macropartisanship, 1937–1953
To illustrate the substantive consequences of weighting, we compare weighted
and unweighted trends in party identification between 1937 and 1953, repli-
cating a similar analysis by Norpoth, Sidman, and Suong (2013). Using the
unweighted poll samples,36 Norpoth et al. find that Democratic identification
declined dramatically in the late 1930s and early 1940s, even falling below
Republican identification in themid-1940s. Only during the 1948 election cam-
paign, they argue, did “the Democratic lead in party identification reach . . .

36 These authors did not use weights because they concluded that the weights then available for
polls before 1946 did not significantly increase the estimated share of Democratic identifiers
(Norpoth, Sidman, and Suong 2013, 151, n 6).
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Figure 5.2 Weighted and unweighted trends in party identification in the US
public, 1937–1953. The solid line tracks the unweighted quarterly percentage
of Democrats among major-party identifiers. The dashed and dotted lines
track the same quantity estimated using comparable and education weights,
respectively. The dot labeled “ANES ’52” is the Democratic percentage in the

1952 ANES study, and the gray band is the estimate’s 95% confidence
interval. Note that comparable weights are not available after the third quarter

of 1952.

the magnitude that would be recorded in the National Election Studies for
decades to come” (p. 147). In their view, this evidence suggests that it was
the Democrats’ successful management of the SecondWorld War and the post-
war economy, not the economic crisis and policy innovations of the 1930s, that
gave the party a durable majority in the American public.
We explore whether using our new weights alters these conclusions. To

do so, we first calculated the weighted and unweighted Democratic percent-
age of major-party identifiers (that is, Democrats and Republicans) in each of
the 166 polls that contain a party ID question and appropriate weights. We
then averaged polls within quarters, yielding a quarterly time-series of the
percent Democratic among party identifiers that is analogous to the “macropar-
tisanship” series created by Mackuen, Erikson, and Stimson (1989) for the
post-1945 period. Figure 5.2 plots the quarterly estimates for the unweighted
polls as well as for comparable and education weights, both calibrated to the
US adult public. For comparison, the figure also plots the unweighted percent-
age of Democrats in the 1952 American National Election Studies (ANES)
survey, 63%, which is about where it would remain for the next decade.37 The

37 If the 1952 ANES is poststratified by Education, Black, Female, and South, the estimated
Democratic share increases to 64%.
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unweighted estimates support Norpoth, Sidman, and Suong’s inference that,
before 1948, Democratic ID rarely reached the levels recorded in later ANES
studies. In fact, in no quarter between 1938 and 1947 did unweighted Demo-
cratic ID fall within the 95% confidence interval of the 1952 ANES estimate
(59% to 67%), which is indicated by the gray band across the plot.
The picture changes substantially, however, if we weight the polls. Although

the weighted and unweighted time series broadly parallel one another – declin-
ing through 1946, recovering in 1947–1949, and then dropping again in 1951 –
the weighted estimates of Democratic ID are substantially higher than the
unweighted ones in almost every quarter.38 The gap is around 3–5 percent-
age points for comparable weights and 4–6 points for education weights.
According to the weighted analysis, Democrats maintained a clear advantage
over Republicans throughout the 1937–1953 period. Moreover, the weighted
estimates are statistically distinguishable from the 1952 ANES only for a
handful of quarters concentrated in 1946–1948 and 1951–1952. In short,
Norpoth, Sidman, and Suong’s unweighted analysis appears to have been
largely correct about partisan trends but wrong about levels. As a result, the
Democrats’ victory in 1948 seems less like a realignment and more like a local
high point for a party that had been the majority coalition since at least the
mid-1930s.
In addition to shedding new light on debates about the timing of the

1930s–1940s partisan realignment, this analysis also provides a nice illus-
tration of the statistical value of using the survey weights. Ameliorating the
polls’ underrepresentation of Southern, black, female, and lower-class Amer-
icans leads to substantially higher estimates of Democratic identification in
the mass public. Although the gap between the unweighted and comparable-
weights estimates narrowed between 1937 and 1953, suggesting that firms’
sampling procedures becamemore representative over time, the two lines never
fully converge. It is also worth noting that the trend-line for the compara-
ble weights is closer to the education trend-line than to the unweighted one.
This suggests that the comparable weights are almost (though not quite) as
effective as the education weights at mitigating the Republican bias in the raw
samples.

5.5 Example Code
The Code Ocean capsule for this section is published at https://doi.org/
10.24433/CO.0010101.v1.

38 Comparable weights are not available after the third quarter of 1952 because polls after that
point did not ask about phone ownership.

https://doi.org/10.24433/CO.0010101.v1
https://doi.org/10.24433/CO.0010101.v1
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Listing 5.1 Setup
1 ### Packages
2 library(tidyverse) # for useful utilities
3 library(haven) # for reading Stata files
4 library(survey) # for analyzing complex surveys
5
6 ### Functions
7 load_to_env <- function (RData, env = new.env()) {
8 load(RData, env)
9 return(env)
10 }
11 create_targets <- function (target_design, target_formula) {
12 target_mf <- model.frame(target_formula, model.frame(target_design))
13 target_mm <- model.matrix(target_formula, target_mf)
14 wts <- weights(target_design)
15 colSums(target_mm * wts) / sum(wts)
16 }
17
18 ### Targets
19 target_env <- load_to_env("data/targets.RData")
20 ls(target_env) # targets differ by phone question
21
22 ### Poll
23 aipo0380 <- read_dta("data/AIPO0380FW.dta") %>%
24 mutate_if(is.labelled, as_factor)

Listing 5.2 Weighting
1 ### Phone wording code (some polls have split sample, but not this one)
2 phone_wording <- aipo0380$code_k[1]
3 target_ds <- target_env[[paste0("pop.ds.W", phone_wording)]]
4
5 ### Target populations
6 vap_ds <- subset(target_ds, YEAR == aipo0380$YEAR[1]) # voting-age pop
7 vep_ds <- subset(vap_ds, # voting-eligible pop
8 SOUTH11 == "Non-South" | BLACK == "White")
9
10 ### Formula for auxiliary vector
11 aux_form <- ~PHONE*FEMALE + PHONE*REGION4 + PHONE*PROF + PHONE*BLACK +
12 FEMALE*REGION4 + FEMALE*PROF + FEMALE*BLACK + SOUTH*PROF + SIZE3 +
13 PHONE*URBAN + FEMALE*URBAN + SOUTH*URBAN + EDU4*FEMALE + EDU4*PHONE +
14 EDU4*REGION4 + EDU4*BLACK + EDU4*PROF + EDU4*URBAN + AGE3*PHONE +
15 AGE3*FEMALE + AGE3*SOUTH + AGE3*EDU4
16
17 ## Targets
18 vap_targets <- create_targets(vap_ds, aux_form)
19 vep_targets <- create_targets(vep_ds, aux_form)
20
21 ### Make sure levels match
22 wt_vars <- all.vars(aux_form)
23 for (v in seq_along(wt_vars)) {
24 var <- wt_vars[v]
25 print(var)
26 (target_levels <- levels(target_ds$variables[[var]]))
27 (aipo_levels <- levels(aipo0380[[var]]))
28 stopifnot(identical(sort(aipo_levels), sort(target_levels)))
29 aipo0380[[var]] <- factor(aipo0380[[var]], target_levels)
30 }
31
32 ### Drop cases with missing values on weighting variables
33 aipo0380_vap <- aipo0380 %>%
34 filter_at(vars(wt_vars), all_vars(!is.na(.)))
35 aipo0380_vep <- aipo0380_vap %>%
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36 filter(SOUTH11 == "Non-South" | BLACK == "White") # drops 3 Southern blacks
37
38 ### Create initial survey designs (assumes SRS)
39 aipo0380_vap_srs <- svydesign(~1, data = aipo0380_vap)
40 aipo0380_vep_srs <- svydesign(~1, data = aipo0380_vep)
41
42 ### Rake
43 aipo0380_vap_ewt <- calibrate(design = aipo0380_vap_srs,
44 formula = aux_form,
45 population = vap_targets,
46 calfun = "raking")
47 aipo0380_vep_ewt <- calibrate(design = aipo0380_vep_srs,
48 formula = aux_form,
49 population = vep_targets,
50 calfun = "raking")

Listing 5.3 Results
1 ### Weights
2 summary(weights(aipo0380_vap_ewt) / mean(weights(aipo0380_vap_ewt)))
3 summary(weights(aipo0380_vep_ewt) / mean(weights(aipo0380_vep_ewt)))
4 ## Dropping Southern blacks from target pop makes weights somewhat less extreme
5
6 ### Car ownership
7 svymean(~CAR_RECODE, aipo0380_vap_srs, na.rm = TRUE)
8 svymean(~CAR_RECODE, aipo0380_vap_ewt, na.rm = TRUE)
9 svymean(~CAR_RECODE, aipo0380_vep_srs, na.rm = TRUE)
10 svymean(~CAR_RECODE, aipo0380_vep_ewt, na.rm = TRUE)
11 ##> Estimated car ownership voters drops by 4-5 points
12
13 ### Presidential vote
14 svymean(~VOTE_RETRO, aipo0380_vap_srs, na.rm = TRUE)
15 svymean(~VOTE_RETRO, aipo0380_vap_ewt, na.rm = TRUE)
16 svymean(~VOTE_RETRO, aipo0380_vep_srs, na.rm = TRUE)
17 svymean(~VOTE_RETRO, aipo0380_vep_ewt, na.rm = TRUE)
18 ##> Estimated proportion of Dewey (Republican) voters drops by 5 points

6 Extensions and Conclusion
In this final section, we discuss two methodological extensions to our basic
framework. The first is weighting-assisted estimation of causal quantities, such
as the population average effect of some intervention or “treatment.” The sec-
ond is multilevel regression and poststratification (MRP), which differs from
conventional poststratification in that a multilevel model is used to estimate
the mean in each poststratification cell. We conclude with general advice on
weighting-based survey inference.

6.1 Methodological Extensions
6.1.1 Weighting for Causal Quantities

The preceding sections focused on population parameters (e.g., µy) whose
values would be known with certainty if we could enumerate the entire pop-
ulation. In many cases, however, the quantity of interest is a causal rather
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than descriptive one (for other perspectives, see Lumley 2010, 203–216; Hain-
mueller, 2012). Causal effects can be conceptualized as the difference between
two “potential” outcomes: Yi(1), the outcome if unit iwere exposed to the cause
or “treatment” (ai = 1), and Yi(0), the outcome if i were not exposed (ai = 0)
(Splawa-Neyman 1923; Rubin 1974). Because both potential outcomes cannot
be observed for a given unit, the unit-level causal effect

τi ≡ Yi(1)− Yi(0) (6.1)

is fundamentally unobservable. Under certain conditions, however, it is pos-
sible to draw inferences about averages and other functions of the unit-level
effects, such as the sample average treatment effect (SATE):

τS ≡ n−1
S

∑
i∈S

τi

= n−1
S

∑
i∈S

Yi(1)− n−1
S

∑
i∈S

Yi(0). (6.2)

The key condition enabling such inferences is the causal analog of the missing
at random (MAR) assumption for nonresponse: ignorability, which stipulates
that the potential outcomes are, conditional on covariates, independent of treat-
ment assignment.39 In the case of a simple randomized experiment, an unbiased
estimator for the SATE (τS ) is given by the treated–control difference of
means,

τ̂S =

∑
i∈S aiyi∑
i∈S ai

−
∑

i∈S(1− ai)yi∑
i∈S(1− ai)

. (6.3)

When treatment is not administered with equal probability, the SATE can still
be estimated by weighting units by the inverse of their treatment probability,
vi = 1/Pr(ai = 1), or an estimate thereof. The inverse probability–weighted
(IPW) estimator,

τ̂ IPWS =

∑
i∈S aiviyi∑
i∈S aivi

−
∑

i∈S(1− ai)(1− vi)yi∑
i∈S(1− ai)(1− vi)

, (6.4)

is the causal analog of the Hájek ratio estimator applied separately to each
treatment group.40

39 Ignorability also requires that treatment assignment be nondeterministic.
40 Strictly speaking, (6.4) is the “stabilized IPW estimator” because it uses the realized (weighted)

size of the treated group
∑

i∈S aivi rather than the expected size E(na=1) (Aronow and Miller
2019, 267). As with the Hájek estimation, this substitution confers efficiency gains at the
expense of a rapidly diminishing finite-sample bias.
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The SATE is a sample quantity that will in general differ from its population
counterpart, the population average treatment effect (PATE):

τU ≡ N−1
∑
i∈U

τi

= N−1
∑
i∈U

Yi(1)− N−1
∑
i∈U

Yi(0)

= µY(1) − µY(0). (6.5)

To make inferences about the PATE, it is helpful to view the observed yi as the
result of a two-stage sampling process: first, units and their associated pairs of
potential outcomes {Yi(1),Yi(1)} are sampled from the population, and then
the treatment assignment mechanism samples one of those potential outcomes
to be revealed as yi. If the experimental sample is a simple random sample
(SRS) from the population and units are assigned to treatment with constant
probability, then the observed outcomes in each treatment group are an SRS
from the population distribution of potential outcomes. The treated–control
difference of means is thus an unbiased estimate of the PATE.
The same design-based logic extends to more complex sampling and assign-

ment mechanisms. Miratrix et al. (2018), for example, consider the case of
survey experiments in which subjects sampled from the population with known
probabilities πi = d−1

i are randomly assigned to treated and control conditions
with probabilities vi and 1 − vi, respectively.41 As an estimator for the PATE,
they suggest

τ̂HHU =

∑
i∈S aidiviyi∑
i∈S aidivi

−
∑

i∈S(1− ai)di(1− vi)yi∑
i∈S(1− ai)di(1− vi)

= µ̂HY(1) − µ̂HY(0). (6.6)

Miratrix et al. call (6.6) the “double-Hájek” estimator because it applies the
Hájek ratio estimator separately to the treated and control groups. Like τ̂ IPWS ,
τ̂HHU weights by vi to estimate the SATE, but unlike τ̂ IPWS it extrapolates this
estimate to the population by weighting by di as well.
Even if the experimental sample or respondent set is not a random sample

from the population of interest, we may still be able to obtain reasonable esti-
mates of the PATE by weighting the sample. That is, we can replace the design
weights di in (6.6) with adjustment weights w̃i. As with descriptive quantities,
weights for causal quantities can be calculated via poststratification, raking,

41 Miratrix et al. (2018) assume Pr(ai = 1) is constant and therefore drop vi from the expression
in (6.6).
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or other forms of calibration.42 Moreover, sample effect estimates may be
weighted to targets other than the PATE, such as population average treatment
effect among those exposed to treatment:

∑
i∈U (τi | ai = 1)

/∑
i∈U ai (e.g.,

Hartman et al. 2015). Regardless of the target quantity, the assumptions nec-
essary for such causal extrapolation are the same as for descriptive inference.
The auxiliary vector used to calibrate the sample must be contain powerful
predictors of units’ probability of being included in the sample and/or the dif-
ference in their potential outcomes, thereby rendering inclusion probabilities
and treatment effects approximately independent.

6.1.2 Multilevel Regression and Poststratification

Throughout this text, we have confined ourselves to design-based estimators
that, given assumptions about the sampling and nonresponse mechanisms, are
at least approximately unbiased and whose variances can be estimated from
the sampling design alone. These estimators have also been nonparametric
in the sense that they do not rely on a parametric model for the outcome
y. For some problems and purposes, however, a fully model-based approach
may be preferable to a design-based one (see, e.g., Little 1993). The advan-
tages of model-based approaches is well illustrated by the increasingly popular
technique of MRP (Gelman and Little 1997; Park, Gelman, and Bafumi 2004).
MRP is a three-step process, the workflow of which is summarized in

Figure 6.1. The first step is to fit a multilevel model for the outcome vari-
able y, typically using a mix of demographic and geographic variables as

Population
fU (y,x)

Responses
gR(y,x)

Estimate
θ̂y

Weights
w̃

Auxiliary
Information
Ĭx1, . . . , ĬxM

Population
Targets

T̃x

Predicted
Responses
gR(ŷ,x)

Weight
Estimation

Sampling/Response
Model

Measurement
Model

Target
Estimation

MR P

Figure 6.1 The workflow of multilevel regression and poststratification
(MRP).

42 Alternatively, population units’ probabilities of participating in the experiment could be esti-
mated directly via a parametric model, and the estimated probabilities used in an IPW estimator
(Stuart et al. 2011).
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predictors. At least some of the coefficients in the multilevel model are “ran-
dom effects,” meaning that the coefficients themselves are modeled with a prior
distribution, which “shrinks” the coefficient estimates towards the mean of the
prior. The second step is to use the model to predict the expected value of
y for an exhaustive and mutually exclusive set of subpopulations (cells). The
cell predictions are thus a compromise between the data in the cell itself and
information derived from the rest of the population. In the third step, poststrat-
ification, the cell predictions are weighted by their population proportions to
produce estimates for larger subpopulations or the population as a whole. Thus,
for example, one might generate estimates for the US population by taking a
weighted average of the estimates for cells defined by race and state.
The MRP estimator can be viewed as a modification of the conventional

poststratification estimator given in (2.2), with the observed response yi of unit
i in cell c replaced with its predicted response ŷc[i]:

µ̂MRP
y =

∑
i∈R w̃PS

c[i]ŷc[i]∑
i∈R w̃PS

c[i]
, (6.7)

where w̃PS
c[i] = (P̃c[i]/P̂Hc[i]) × di is the poststratification weight for unit i in

cell c. In practice, because ŷc[i] is constant within cells, the estimator in (6.7)
can be simplified to µ̂MRP

y =
∑

c∈U P̃cŷc/
∑

c∈U P̃c, the population-weighted
average of the cell predictions. The advantage of the latter estimator, and of
MRP generally, is that it can be implemented even if there are empty cells,
since their values are imputed.
Even for non-empty cells, the predictions of the multilevel model may still

be preferable to the raw (design-based) cell estimates because the model’s
shrinkage of the random effects has the effect of “regularizing” the predicted
values ŷc. This regularization, for which multilevel regression is but one of
many potential methods, reduces the variance ofMRP relative to classical post-
stratification. From this perspective, MRP can be thought of as an alternative
to raking that, rather than smoothing the cell targets as raking does (see Sec-
tion 2.1.2), smooths the cell means instead (see. Elliott and Little 2000; Gelman
and Carlin 2002). The cost of this regularization is typically some bias in the
cell predictions and thus in estimators of aggregate population quantities (see,
e.g., Caughey and Warshaw 2019).
Despite this bias, there are at least two conditions under which MRP may

be preferable to classical design-based poststratification. The first condition
is if the partition of the population required for unbiased estimation – that is,
the set of cells within which either ρ or y is homogeneous – defines cells that
are empty in the sample, making classical poststratification impossible. In this
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case, MRP’s model-based imputation of the empty cells may result in less bias
than poststratification with coarser auxiliary vector (e.g., one with collapsed
cells). The second condition is if poststratification, while feasible, yields esti-
mators with unacceptably high variance. If this is so, even if the bias of MRP
is larger than design-based poststratification, it may nevertheless have lower
mean squared error (MSE). In sum,MRP can sometimes have smaller bias than
design-based alternatives, and even when its bias is larger, MRP is often more
efficient. These conditions are especially common in the context of estimation
for small subpopulations, such as states (Lax and Phillips 2009) or congres-
sional districts (Warshaw and Rodden 2012), for which sample sizes are often
too small for reliable design-based inference.

6.2 Concluding Advice
This Element has elaborated a general approach to addressing sampling and
nonresponse bias in surveys. Although it has described a number of specific
methods and procedures, in our view these details are less important than the
general workflow that we advocate. This workflow consists of two basic tasks:
target estimation and weight estimation. Despite the conventional emphasis on
the latter, both are important, and reliance on unrealistic assumptions (whether
explicit or implicit) in either task can result in poor estimates. It is there-
fore essential that survey analysts give careful thought to their models of
the sampling process, nonresponse mechanism, and measurement of auxiliary
information, drawing on substantive knowledge as well as statistical criteria.
That said, it is rare that the survey analyst fully understands the measure-
ment and sampling/nonresponse processes. As a consequence, it is unrealistic
to expect post hoc adjustment, however skillful, to eliminate bias completely.
Even as auxiliary information become increasingly abundant, there is no substi-
tute for the laborious work of designing and implementing high-quality surveys
in which the problems weighting is supposed to fix are as minimal as possible.

6.3 Example Code
The Code Ocean capsule for this section is published at https://doi.org/
10.24433/CO.5307324.v1.

Listing 6.1 Setup
1 ### Packages
2 library(tidyverse) # for useful utilities
3 library(survey) # for analyzing complex surveys
4
5 ### Functions
6 create_targets <- function (target_design, target_formula) {
7 target_mf <- model.frame(target_formula, model.frame(target_design))

https://doi.org/10.24433/CO.5307324.v1
https://doi.org/10.24433/CO.5307324.v1
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8 target_mm <- model.matrix(target_formula, target_mf)
9 wts <- weights(target_design)
10 colSums(target_mm * wts) / sum(wts)
11 }
12 load_to_env <- function (RData, env = new.env()) {
13 load(RData, env)
14 return(env)
15 }

Listing 6.2 Weighting for causal inference
1 ## Data (from replication files for Miratrix et al. 2018, "Worth Weighting?")
2
3 experiments <- read.csv("data/Survey_Experiment_Data_table.csv")
4
5 ucb <- experiments %>%
6 filter(Survery == "UCB_Follow" & Outcome == "typicalzero") %>%
7 droplevels()
8
9 ucb_awt <- svydesign(~1, weights = ~weight, data = ucb) # YouGov weights
10 ucb_srs <- svydesign(~1, weights = ~1, data = ucb) # unweighted
11
12 ## Estimate effects in survey experiment
13 ### Mean by treatment group (= mean of potential outcomes, if tr probs same)
14 svyby(~Y, ~T, ucb_awt, svymean, na.rm = TRUE)
15 ### Difference of means (double-Hajek esimator)
16 svycontrast(svyby(~Y, ~T, ucb_awt, svymean, na.rm = TRUE),
17 quote(`Democratic report` - `Republican report`))
18 ### Same as regression coefficient in:
19 summary(svyglm(Y ~ T, ucb_awt))
20 ### Compare with unweighted (small difference)
21 summary(svyglm(Y ~ T, ucb_srs))
22
23 ## Calibrating to PID
24
25 ### PID is a strong predictor of Y and of the treatment effect:
26 summary(svyglm(Y ~ T * pid, ucb_awt))
27 ### Thus, calibrating to PID may increase the precision of the estimates.
28
29 ### This same procedure could also be used to adjust for unequal treatment
30 ### assignment probabilities (i.e., if this were an observational study rather
31 ### than an experiment).
32
33 ### Recode treatment to {-1/2, 1/2} so that its target is 0
34 ucb_awt <- update(ucb_awt, T2 = as.integer(T) - 3/2)
35
36 ### PID targets (from other experiments)
37 other_experiments <- experiments %>%
38 filter(!is.na(pid) & pid != "Other " & Survery != "UCB_Follow") %>%
39 droplevels()
40 other_awt <- svydesign(~1, weights = ~1, data = other_experiments)
41 pid_targets <- c(create_targets(other_awt, ~pid),
42 T2 = 0, `pidIndependent:T2` = 0, `pidRepublican:T2` = 0)
43
44 ### Calibrate
45 ucb_awt_pid <- calibrate(subset(ucb_awt, !is.na(pid)), ~pid * T2, pid_targets)
46
47 ### Results
48 svyby(~pid, ~T, ucb_awt, svymean, na.rm = TRUE, keep.var = TRUE)
49 svyby(~pid, ~T, ucb_awt_pid, svymean, na.rm = TRUE, keep.var = TRUE) # balanced
50
51 summary(svyglm(Y ~ T, subset(ucb_awt, !is.na(pid))))
52 summary(svyglm(Y ~ T, ucb_awt_pid)) # slightly more precise
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Listing 6.3 Multilevel regression and poststratification

1 ### Packages
2 library(arm)
3 library(haven) # for reading Stata files
4
5 ### Poll
6 aipo0380 <- read_dta("data/AIPO0380FW.dta") %>%
7 mutate_if(is.labelled, as_factor) %>%
8 mutate(dem_retro = case_when(
9 VOTE_RETRO == "FDR" ~ 1,
10 VOTE_RETRO == "Dewey" ~ 0,
11 TRUE ~ NA_real_))
12 poll_year <- aipo0380$YEAR[1]
13
14 ### Targets
15 target_env <- load_to_env("data/targets.RData")
16
17 ### Phone wording code (some polls have split sample, but not this one)
18 phone_wording <- aipo0380$code_k[1]
19 target_ds <- target_env[[paste0("pop.ds.W", phone_wording)]]
20
21 ### Target population
22 vap_ds <- subset(target_ds, YEAR == poll_year) # voting-age pop
23
24 ### Make sure levels match
25 aipo0380 <- aipo0380 %>%
26 mutate(StPOAbrv = factor(StPOAbrv, levels(vap_ds$variables$StPOAbrv)))
27
28 ### Survey design
29 aipo0380_srs <- svydesign(~1, weights = ~1, data = aipo0380)
30
31 ### Cell distribution in population (%)
32 round(svytable(~BLACK + StPOAbrv, vap_ds, round = FALSE, Ntotal = 100), 2)
33
34 ### Cell distribution in sample (many empty)
35 round(svytable(~BLACK + StPOAbrv, aipo0380_srs))
36
37 ### (1) Model outcome (presidential vote) -- [Note: not very sophisticated]
38 pres_mod <- glmer(dem_retro ~ BLACK + (1 | StPOAbrv),
39 data = aipo0380,
40 family = binomial)
41 display(pres_mod)
42
43 ### (2) Predict cell means
44 pred_input <- svytable(~BLACK + StPOAbrv, vap_ds) %>%
45 as.data.frame() %>%
46 filter(StPOAbrv != "SC") # missing in poll so no intercept est.
47 pred_output <- predict(pres_mod, pred_input, type = "response")
48 pred_df <- data.frame(pred_input, Yhat = pred_output)
49 head(pred_df)
50
51 ### (3) Poststratify
52 pred_ds <- svydesign(~1, weights = ~Freq, data = pred_df)
53
54 svyby(~dem_retro, ~StPOAbrv, aipo0380_srs, FUN = svymean,
55 keep.var = FALSE, na.rm = TRUE)
56
57 #### Compare with raw estimates
58 comp_df <- data.frame(
59 StPOAbrv = svyby(~dem_retro, ~StPOAbrv, aipo0380_srs, FUN = svymean,
60 keep.var = FALSE, na.rm = TRUE)$StPOAbrv,
61 Raw = svyby(~dem_retro, ~StPOAbrv, aipo0380_srs, FUN = svymean,
62 keep.var = FALSE, na.rm = TRUE)$statistic,
63 MRP = svyby(~Yhat, ~StPOAbrv, pred_ds, FUN = svymean,
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64 keep.var = FALSE, na.rm = TRUE)$statistic)
65
66 comp_df %>% mutate(Diff = MRP - Raw) %>% arrange(abs(Diff))
67
68 comp_df %>%
69 ggplot(aes(x = Raw, y = MRP, label = StPOAbrv)) +
70 xlim(0, 1) +
71 ylim(0, 1) +
72 geom_text() +
73 geom_abline(intercept = 0, slope = 1)



Glossary

ACS American Community Survey. 41
adjustment weight (w̃i) A weight assigned to each responding unit i after the

sample has been realized, typically as a means of adjusting for bias due to
nonrandom sampling and/or nonresponse but also potentially for increasing
estimators’ precision. 8, 75

adjustment weighting The ex post assignment of weights to sampled units,
typically as a means of increasing the representativeness of samples and
thereby decreasing the bias and/or variance of estimators of population
quantities. Contrast with inverse-probability weighting, which derives
weights from (ex ante) features of the sampling design. Specific types of
adjustment weighting include poststratification, raking, and calibration. 8

AIPO American Institute of Public Opinion. 49
ANES American National Election Studies. 3, 63
AT&T American Telephone and Telegraph. 25
auxiliary vector (zzzi) A vector defined for each member i of the respondent set

R, each element of which is a function of one or more auxiliary variables.
Calibrating a sample to a population with respect to an auxiliary vector
zzzi entails finding adjustment weights w̃ww that satisfy the constraints T̃xxxk =∑

i∈R w̃izik, k ∈ 1 . . .K, where T̃xxx is a vector of K population targets. 17
auxiliary information (̆Ixxx) Data on the joint and/or marginal distributions of

one or more auxiliary variables in the target population. 4, 77
auxiliary variable (x) A variable measured in the sample, data on whose pop-

ulation distribution are available from auxiliary information. see auxiliary
information, 8, 75, 77, 78

bootstrap A family of methods that involve taking repeated samples from
an empirical distribution F̂, itself a sample from an unknown distribution
F, as a means of estimating the sampling distributions of functions (i.e.,
parameters) of F. 7, 15

calibration A method of adjustment weighting in which a sample is “cali-
brated” to the target population by finding adjustment weights that satisfy
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a set of population targets while deviating as little as possible from a set of
base weights (e.g., design weights). see adjustment weighting, 8, 17, 79

CCES Cooperative Congressional Election Study. 41
CPS Current Population Study. 10

DAE difference in absolute error. 61
design effect due to weighting (deffKish) An estimate of the ratio of the vari-

ance of a weighted estimator to the ratio of an unweighted one, proposed by
Kish (1965) as an indicator of the degree to which unequal weights make
estimators less precise. 20, 42

design weight (di) A weight assigned to each sampled unit i based on the sam-
pling design, typically equal to the inverse of the unit’s ex ante probability
of being selected. 6

Dirichlet A multivariate distribution used to model data that range between 0
and 1 and whose values sum to 1 (e.g., proportions). It is denoted Dir(α),
where the parameter vector α has the same length as the number of pro-
portions being modeled. The Dirichlet is the multivariate generalization of
the beta distribution and is closely related to the Multinomial distribution
for categorical counts. seeMultinomial, 30

EI ecological inference: Using aggregate data (e.g., on the proportion of the
population that is African American and on the proportion with a tele-
phone) to draw inferences about the properties of individual units (e.g.,
the proportion of African Americans who own a telephone). 28, 54

entropy weighting A species of calibration that employs the entropy distance
Dent(w̃i, di) = wi log(wi/di). see raking, 17, 43, 78

GREG generalized regression (estimator). 31

Hájek estimator A variant of the Horvitz-Thompson estimator of the mean
that substitutes the realized weighted sample size for the expected one; also
known as the ratio estimator of the mean. 6

HT Horvitz-Thompson. 5

IID independent and identically distributed. 8
IPUMS Integrated Public Use Microdata Series. 25, 51
item nonresponse The presence of missing values on some but not all survey

items. cf. unit nonresponse, 5

joint distribution The density or probability of combinations of values of two
or more variables. cf. marginal distribution, 5, 13
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linear weighting A species of calibration that employs the chi-square distance
Dχ2

(w̃i, di) = (w̃i − di)2/di. see poststratification, 17, 31, 41, 78

MAR missing at random: Data are MAR if, given the observed values
and missingness pattern, elements’ probability of being missing does not
depend on the values of the missing elements. seeMCAR, 8, 67

marginal distribution The unconditional density or probability of each value
a given variable, irrespective of the values of other variables. cf. joint
distribution, 15

MCAR missing completely at random: Data are MCAR if the probability of
missingness does not depend on either the observed or the unobserved
values of the data (i.e., is independent of both). seeMAR

measurement modelA characterization of the process linking the true popula-
tion distribution of the auxiliary variables to auxiliary information on those
variables. 24

MOC method of composition: A simulation-based method of estimating the
marginal distribution h(y) given the conditional distribution f(y|xxx). In the
bivariate case, this involves repeating two steps: (1) draw x∗ ∼ g(x); (2)
draw y∗ ∼ f(y|x∗). The resulting collection of y∗ draws will be an IID
sample from h(y). 32

MRP multilevel regression and poststratification: A method of opinion mea-
surement, especially for small-area estimation, in which opinion in disjoint
subpopulations is modeled hierarchically as a function of geographic
and/or demographic characteristics. Opinion in larger (sub)populations is
then estimated as a weighted (i.e., poststratified) average of the model-
based subpopulation estimates. 66

MSEmean squared error: Ameasure of the inaccuracy of an estimator, defined
as the average (across repeated samples) of the squared differences between
the true and estimated values of a parameter; or, equivalently, the variance
plus the squared bias. 15, 71

Multinomial A generalization of the binomial distribution used to model the
number of successes across several categories given a fixed number of
independent trials. 29

nonresponse bias Bias due to systematic differences in sampled units’ proba-
bilities of providing valid responses. see unit nonresponse, 3

NORC National Opinion Research Council. 49

observationmodelThe component of a state-spacemodel that relates the latent
state to its observed indicators. see transition model, 28



78 Quantitative and Computational Methods for the Social Sciences

OPOR Office of Public Opinion Research. 49

PATE (τU ) population average treatment effect: The average causal effect of
treatment across units in the population. 68

population target (T̃xxx) An estimate of the population mean or total of a
function of one or more auxiliary variables xxx, to which a sample can be
“calibrated” by finding weights such that the analogous moments in the
weighted sample match the targets. 8, 75, 76, 79

poststratification A type of linear weighting in which units are categorized
into a set of exhaustive and mutually exclusive strata (cells) assigned
weights such that the cells’ sample proportions match a set of target
proportions. 8, 14

probability sampling A process of selecting survey subjects or other units in
which the probability of each possible sample from the population (and thus
the sampling probability of each unit) is known ex ante. cf. quota sampling,
3, 49

quota sampling A sampling method in which units are selected according to
predetermined proportions (quotas) of each demographic type, but within
these quotas units are sampled purposively rather than according to ex ante
probabilities. cf. probability sampling, 2, 39, 50

raking A type of entropy weighting in which iterative proportional fitting is
used to find weights that ensure that the sample matches a set of marginal
population totals. 8, 15

RDD random digit dialing: A method of selecting respondents for a telephone
survey based on the random generation of telephone numbers. 3, 39

respondent set The set of sampled subjects who provide valid responses to all
relevant survey variables. 5, 75

response probability (ρi) The probability that unit i, if sampled, will provide
valid answers to the survey. 7

response influence (ωi) The inverse response probability of unit i. see response
probability, 16

sampling probability (πi) The ex ante probability that population unit i will
be selected for inclusion in the sample. 5

sampling bias Bias due to systematic discrepancies between the target pop-
ulation and the set of units selected for inclusion in the sample. see
nonresponse bias, 3
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SATE (τS ) sample average treatment effect: The average causal effect of
treatment across units in a given sample. 67

SRC Survey Research Center. 3, 59
SRS simple random sample: A sample in which the inclusion probability for

each population unit is known, independent, and equal. 5, 14, 40, 68
SSF synthetic sampling frame. 27

target estimation The process of calculating population targets for use in
calibration or other forms of weighting. 13, 24

transition model The component of a state-space model that describes how
the latent state evolves over time. see observation model, 29

unit nonresponse The failure of one or more sampled units to provide valid
responses to any of the survey items. cf. item nonresponse, 5

VAP voting-age population. 53
VEP voting-eligible population. 53

weight estimation The creation, typically after a survey has been completed,
of adjustment weights intended to reduce the bias or variance of survey
estimates. 13
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