
Dynamic Multidimensional Scaling with
Aggregate Data: An Ordinal Group-Level

IRT Approach
Elissa Berwick1,*, Devin Caughey2

1Assistant Professor, Political Science, McGill University
ORCID: https://orcid.org/0000-0002-0011-5073

2Professor, Political Science, Massachusetts Institute of Technology
ORCID: https://orcid.org/0000-0001-6419-6805

*Corresponding author contact: elissa.berwick@mcgill.ca

Dynamic models of aggregate public opinion are increasingly popular, but
to date they have been restricted to unidimensional latent traits. This is
problematic because in many domains the structure of mass preferences is
multidimensional. We address this limitation by deriving a multidimensional
ordinal dynamic group-level item response theory (MODGIRT) model. We
describe the Bayesian estimation of the model and describe a novel work-
flow for dealing with the tricky problem of identification. With simulations,
we show that MODGIRT recovers aggregate parameters without estimating
subject-level ideal points and is robust to moderate violations of assumptions.
We further validate the model by reproducing at the group level an existing
individual-level analysis of British attitudes towards redistribution. We then
reanalyze a recent cross-national application of a group-level IRT model, re-
placing its domain-specific confirmatory approach with an exploratory MOD-
GIRT model. We describe extensions to allow for overdispersion, differential
item functioning, and group-level predictors. A publicly available R package
implements these methods.
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1 Introduction

Scholars frequently use aggregated survey results to make inferences about the latent

structure of public opinion. This approach was pioneered by Stimson (1991), who de-

veloped a “dyad ratios” algorithm for combining issue-specific time series into a single

measure of public policy “mood.” Later scholars built on this approach by formulating

explicit measurement models (e.g., Jackman 2005) and more recently by grounding these

methods in micro-level models of individual choice, primarily within an item response

theory (IRT) framework (McGann 2014; Caughey and Warshaw 2015; Claassen 2019;

Solt 2020).

Most of these recent models build on the insight that if we are interested in characteristics

of the distribution of ideal points (e.g., its mean) in specified sub-populations, we do not

need to estimate the ideal point of any particular person (Mislevy 1983; Lewis 2001).

Such “group-level” IRT models have substantial advantages. First, as a general rule,

estimating aggregate quantities directly is often more accurate than aggregating poorly

estimated lower-level quantities (see, e.g., Hopkins and King 2010 in the context of text

analysis). Second, group-level IRT models are more computational tractable because

they do not require parameters for each subject, which in some studies can number in the

millions (e.g., Caughey and Warshaw 2022). Third, because they do not require multiple

items per survey subject, group-level IRT models can be applied to data aggregated from

many distinct surveys, potentially increasing by orders of magnitude the number of items

and subjects that contribute to the analysis.
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To date, however, group-level IRT models have only accommodated a single latent fac-

tor or dimension. This has prevented their use in the kinds of contexts where multidi-

mensional scaling has proved useful (e.g., Treier and Hillygus 2009; Pan and Xu 2018;

Armstrong et al. 2021). As Hu et al. (2023) argue with respect to public support for

democracy, there are important cases where a unidimensional group-level IRT model is

clearly inadequate. Studies where multidimensionality is suspected have thus tended to

take a confirmatory approach of fitting separate one-dimensional models to distinct sub-

sets of items (e.g., Caughey, O’Grady, and Warshaw 2019). But this approach requires

the potentially strong assumption that the items that load onto each factor can be iden-

tified a priori. In short, a major potential benefit of group-level IRT models—that they

enable the analysis of enough items to permit reliable estimation of multidimensional

traits—has thus far gone unrealized.

This paper aims to rectify these limitations with several contributions. First, we theoret-

ically derive a multivariate extension of one-dimensional group-level IRT models, which

we call the multidimensional ordinal dynamic group-level IRT (MODGIRT) model. Sec-

ond, building on recently developed algorithms, we construct a novel workflow for iden-

tifying and rotating draws from posterior distributions that is generally applicable to

multidimensional IRT and factor-analytic models. Third, we implement the MODGIRT

model in the Bayesian software program Stan (Stan Development Team 2024) and pro-

vide a publicly available R package with functions for preparing the data and processing

the Stan output.

The paper is organized as follows. We begin by deriving the MODGIRT model from
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micro-level assumptions. We then show how this model may be practicably estimated

and identified. Next, using simulations, we show that MODGIRT yields accurate infer-

ences under the assumed data generating process and is robust to moderate violations

of the model’s assumptions. We then use the method to reanalyze two existing stud-

ies.1 The first reanalysis, on redistributive attitudes in the United Kingdom (Cavaillé

and Trump 2015), demonstrates MODGIRT’s capacity to recover inferences originally

derived from individual-level data. The second, on Europeans’ attitudes in four issue

domains (Caughey, O’Grady, and Warshaw 2019), demonstrates the benefits of MOD-

GIRT’s exploratory approach relative to a confirmatory one that hard-codes the relation-

ship between items and latent dimensions. The penultimate section discusses extensions

to the basic model, and the final section concludes.

2 Model

In this section, we derive the MODGIRT model from a micro-model of survey responses,

which helps to clarify the meaning and function of the model’s assumptions. (Extensions

to the model derived here are described in Section 5.) We then describe a novel workflow

for the challenging task of identifying multidimensional latent-variable models.

1The supplementary information (SI) includes a third application, an original analysis of public opinion
in Spain.
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2.1 Derivation

In the standard multidimensional IRT model (Clinton, Jackman, and Rivers 2004), the

binary response of subject i’s to question q is defined as

yiq =


1 if β′

qθi + ϵiq > αq

0 otherwise.

In this model, θi ∈ RD is the ideal point vector representing subject i’s position in D-

dimensional space. The difficulty αq ∈ R represents the threshold required for a positive

response on question q. The discrimination vector βq ∈ RD captures the how strongly

the response yiq depends on subject i’s ideal point. ϵiq is an observation-specific utility

shock. Under the conventional identification restriction ϵiq ∼ N (0, 1), the probability of

a positive response is

Pr(yiq = 1 | αq, βq, θi) = Φ(β′
qθi − αq).

This is the individual-level probit IRT model.

The MODGIRT model is intended for situations where the target of inference is the

mean ideal point at some higher level of aggregation, such as a country. One option is

to estimate this quantity directly by making it a parameter of the model (e.g., McGann

2014; Solt 2020). Alternatively, the mean can be estimated indirectly by parameterizing

the model at a lower level of aggregation, such as age categories with country, and then
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poststratifying the parameter estimates to match the population of interest (Caughey

and Warshaw 2015; cf. Park, Gelman, and Bafumi 2004).

Under either approach, estimating mean ideal points without estimating the ideal points

of individual subjects requires an assumption about the distribution of ideal points within

groups. The assumption we make is that ideal points are distributed multivariate normal

around a group-specific mean vector θ̄g with a common variance-covariance matrix Σθ:

θg[i] ∼ ND(θ̄g, Σθ).

This assumption allows us to derive pgq = Pr(yiq = 1 | αq, βq, θ̄g[i], Σθ). Affine transfor-

mations of the multivariate normal distribution operate such that if X ∼ N (µ, Σ) and

Y = BX + c, then Y ∼ N (Bµ+c, BΣB′). By this rule, the distribution of β′
qθg[i] −αq

can be written

β′
qθg[i] − αq ∼ N (β′

qθ̄g − αq, β′
qΣθβq).

Moreover, since ϵiq is an independent standard normal variable,

β′
qθg[i] − αq + ϵiq ∼ N (β′

qθ̄g − αq, β′
qΣθβq + 1).

The probability that subject i randomly sampled from group g gives a positive answer

to question q is therefore
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pgq = Pr(β′
qθg[i] − αq + ϵiq > 0) (1)

= Φ

 β′
qθ̄g − αq√

β′
qΣθβq + 1

 , (2)

where Φ is the standard normal cumulative distribution function.

If responses are conditionally independent,2 the number of positive answers to item q in

group g is distributed

sgq ∼ Binomial(ngq, pgq).

As shown in the Supplemental Information, the binary group-level IRT model just de-

scribed can be extended to multiple ordered response categories using an ordinal cumu-

lative model (Samejima 1997).

2.1.1 Priors

We make this model dynamic by allowing the group mean ideal points to change across

periods t ∈ 1 . . . T . We smooth the changes across periods with a “random walk” prior

(Martin and Quinn 2002; cf. Kołczyńska and Bürkner 2023),

2That is, independent conditional on the item parameters and the group means and (co)variances.
This independence is violated if respondents answer more than one question each. We investigate the
consequences of such violations in Section 3.2.
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θ̄gt ∼ ND(θ̄g,t−1, Ω),

where Ω is a D × D variance-covariance matrix.

To complete the Bayesian specification, we assign standard-normal priors to βq, αqk, and

θ̄g1. We define each of the covariance matrices Σθ and Ω as the product of a correlation

matrix, which is given a LKJ(2) prior, and a variance vector (σθ ∼ Cauchy+(0, 1) and

ω ∼ Cauchy+(0, 0.1), respectively).

2.2 Identification

Like all latent variable models, identifying the MODGIRT likelihood requires restrictions

on the parameter space. If the model has D latent factors, then D(D + 1) independent

restrictions are required for local identification, and a further D restrictions for global

identification (Rivers 2003). One set of D(D + 2) restrictions theoretically sufficient for

global identification is the following:

1. Zero-mean group ideal points (D): ∑
g θ̄gdt = 0 ∀d and for one t

2. Unit-variance group ideal points (D): ∑
g θ̄2

gdt = 1 ∀d and for one t

3. Orthogonal factors (D[D − 1]/2): ∑
g θ̄gdtθ̄gd′t = 0 ∀d ̸= d′ and for one t

4. Rotation invariance3 (D[D − 1]/2): βqd = 0 ∀i < d

5. Sign invariance (D): βqd > 0 or βqd < 0 for some item i on each factor d.

3Quinn (2004), 340. It is also possible to impose additional restrictions on βid beyond those necessary
for identification, as is done in confirmatory factor analysis.
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Note that because the model is dynamic, we impose restrictions 1–3 in a single time

period only (by default, t = 1).

Though theoretically well understood, identification restrictions can be tricky to apply to

models estimated with Monte Carlo simulation. In particular, point and sign restrictions

like (4) and (5) above must be chosen carefully. Condition 4, for example, restricts

the first item to load only on the first factor, but if this item happens to have no

strong loadings, then identification will be lost.4 While this problem can be avoided by

reordering the items, practical difficulties such as these present challenges to automating

the identification of Bayesian IRT models.

Our solution to these problems, which can be applied to any IRT or factor-analytic model,

involves a combination of within-estimation and post-estimation transformations. We

impose restrictions 1–3 during the estimation process. We do so by first drawing a “raw”

matrix θ̄
z from its prior distribution. We then transform this matrix by de-meaning its

columns (restriction 1) and then (restrictions 2 and 3) “whitening” the centered matrix

θ̄
0 to produce θ̄

∗:

θ̄
∗ = L′θ̄

0
,

where L is the Cholesky decomposition of the inverse of the column-wise covariance ma-

trix of θ̄
0. These transformations force each draw of the group ideal points to have zero

4See Anderson and Rubin (1956, 119), whose theorem 5.4 states that identification restriction must
hold for the subset of items with non-zero loadings.
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mean and unit variance in each dimension and to be uncorrelated across dimensions.

Even with these restrictions imposed, the likelihood is still invariant to rotation and/or

signed permutation of the item discriminations βqd. As noted above, one solution is to

impose restrictions 4 and 5 during estimation, and the software we develop offers this as

an option for the user. Through careful selection of items, these restrictions enable users

to define the substantive meaning of the factors and their polarity.5 In practice, however,

we have found that sampling is more efficient if we impose the remaining D(D + 1)/2

identification restrictions by post-processing the MCMC draws.

To do so, we employ the Rotation-Sign-Permutation (RSP) algorithm proposed by Pa-

pastamoulis and Ntzoufras (2022). Rather than setting selected item loadings to 0, the

RSP algorithm first applies a varimax rotation to each β draw.6 This step resolves

rotation invariance but not invariance to permutation of the factor labels or reversals

in their polarity. The RSP algorithm’s second step is find the draw-specific sign and

permutation matrices that harmonize the draws to a single mode. The RSP algorithm

yields a collection of identified draws of β. As a byproduct, it also produces three D ×D

rotation matrices, R (varimax rotation), S (sign), and P (permutation). With these

in hand, we can apply the same rotations to each draw θ̄
∗
(s), thus identifying the ideal

points as well:

θ̄(s) = θ̄
∗
(s)RSP.

5As Aguilar and West (2000, 340) note, by requiring β1d to be 0 for all d > 1, restriction 4 implicitly
defines the first factor as the only one systematically related to item 1.

6Varimax rotation finds the rotation of factor loadings (here, item discriminations) that maximizes the
sum of the within-factor variances of the squared loadings.
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Similarly, the covariance matrices can be identified with the transformation

Ω(s) = (RSP )⊤Ω∗
(s)RSP.

Due to the varimax rotation, the identified β estimates will have a relatively “sim-

ple” structure, aiding interpretation.7 If desired, however, the identified draws can be

further transformed with a different rotation criterion, including ones that result in

oblique rather than orthogonal factors (for an overview of rotation criteria, see Sass and

Schmitt 2010).8 Alternatively, β can be rotated to match a matrix of “target” load-

ings (Bernaards and Jennrich 2005). For example, restriction 4 can be implemented by

setting the requisite elements of the target matrix to 0.

2.3 Estimation

We use the R package cmdstanr (Gabry, Češnovar, and Johnson 2023) to fit this model

in the Bayesian software program Stan, which samples from the posterior distribution us-

ing Hamiltonian Monte Carlo (HMC).9 The SI contains the Stan code for the model. The

R package accompanying this paper contains functions implementing the pre-processing

and post-processing steps needed to prepare the data and process the posterior draws.

7A “simple” structure is one where each item loads primarily on a single factor and where each factor
has a mix of large loadings and near-zero ones.

8If the rotation is oblique, the rotation matrix T (e.g., T = RSP ) is replaced with G = (T ⊤)−1.
9HMC is a variant of Markov Chain Monte Carlo (MCMC) that is much more efficient than traditional

MCMC at fitting complex Bayesian models.
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3 Simulations

We use simulation-based calibration (Gelman et al. 2020) to evaluate MODGIRT’s

capacity to recover group-level parameters. For each simulation run, we draw a set

of group and item-level parameters (θ̄g, βq, αq) from their prior distributions.10 We

then draw a dataset (θi, ϵiq, Yiq) conditional on the simulated parameter values, fit the

MODGIRT model to the dataset, and compare the estimated posterior distribution to

the simulated parameter values. We evaluate a static version of the model with binary

response and two latent dimensions. Figure 1 illustrates the complete data-generating

process used in the simulations. Within each simulation, we apply the RSP algorithm

to identify the posterior estimates and then target rotate the identified estimates to the

simulated parameter values (Bernaards and Jennrich 2005, 688–89).

10Instead of using the weakly informative prior for Σθ specified in our Stan model, we generate re-
alistic values for the entire variance-covariance matrix Σθ by randomly drawing from its posterior
distribution in an actual application to 2004 BSA data (see Section 4.1).
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θg[i] ∼ ND(θg, Σθ)

Σθ drawn from posterior
of real data

θg ∼ ND(0, ID)

G
N x G

βq ∼ ND(0, ID)

αq ∼ N (0, 1)

β′
qθg[i] − αq + εg[i]q = zg[i]q

εg[i]q ∼ N (0, 1)

Q

N x G x Q

Yg[i]q =

®
1 zg[i]q > 0

0 zg[i]q < 0

Observe N x G x A M

Figure 1: Simulation-based calibration for dichotomous MODGIRT model under the as-
sumed data-generating process with G groups, N individuals in each group, Q
items, A observed responses per individual, and M simulation runs.

3.1 Baseline scenario

For the baseline scenario, we set the number of groups and items to G = Q = 50 and

total responses to R = 100,000.11 Under the assumed data-generating process, each

individual answers A = 1 randomly selected item (local independence) and the within-

group variance-covariance matrix Σθ is constant across groups (homoskedasticity).

Table 1 summarizes the average mean-squared error, correlations between simulated and

estimated parameter values, and coverage of 90% credible intervals for each of the three

11For context, in the European data we analyze in Section 4.2, the average year contains G = 162,
Q = 32, and R ≈ 200,000.
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types of target parameters (θ̄g, βq, and αq).12 Correlations are all above 0.99, and

average MSE ranges between 0.004 and 0.017. Coverage for the difficulty parameters

αq is close to the expected 90%, while posterior intervals for group ideal points θ̄g and

item discrimination parameters βq are too wide. These simulations demonstrate that

under the assumed data-generating process our Stan code correctly recovers the true

parameters.

Table 1: Model performance under assumed data-generating process (baseline scenario)
Parameter

type G N R A

Mean

MSE Correlation

Mean 90% CI

coverage

Difficulty 50 2,000 100,000 1 0.007 0.996 0.901

Ideal point 50 2,000 100,000 1 0.004 0.998 0.950

Discrimination 50 2,000 100,000 1 0.017 0.992 0.941

3.2 Violating assumptions and varying conditions

We can adapt the process shown in Figure 1 to examine both violations of model as-

sumptions and variation in modeling conditions. We examine two potential violations of

assumptions: breakdowns in local independence and in the homoskedasticity of within-

group ideal points. To test violations of local independence, we allow our simulated

12We run models with 4 chains, 2,000 post-warmup iterations and an adapt delta of 0.9. We generate
M = 200 possible datasets in each simulation, and then discard results for datasets where parameter
and sampler diagnostics indicate that the model has not converged well (average R̂ > 1.01 or more
than 10 transitions ended in divergence post-warmup).
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subjects to answer increasingly large numbers of items (A). To examine the effect of

heteroskedasticity, we let Σθ vary across groups.

The main consequence of violating either assumption is on coverage of credible intervals.

The coverage rate for group ideal points declines when local independence is violated by

allowing each subject to answer more than one question. After more than A = 20 item

responses per individual, the average coverage of 90% credible intervals starts to dip

below 90%, and by A = 40 intervals cover the true value of the ideal point only 84% of

the time. However, in a real dataset with A = 40, it likely would be feasible to estimate

an individual-level IRT model.

The MODGIRT model is similarly robust to moderate heteroskedasticity, but the more

Σθ varies across groups the worse coverage becomes. Coverage becomes anticonservative

when within-group standard deviations are more than 50% smaller or larger than the

average group’s (see SI for full results). But while violating local independence makes

coverage decline only for ideal point estimates, heteroskedasticity affects the coverage of

intervals for all parameters types.

We also conduct simulations that reduce the number of groups (G) and vary the num-

ber of individuals in each group (Ng) while keeping all other simulation conditions the

same as in the baseline scenario. Results from these simulations indicate that MSE

decreases the higher total number of responses R and the greater the number of indi-

viduals per group Ng. Less variability in group size also produces more accurate results,

but the effects are less significant than absolute changes in R and Ng. Finally, hav-
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ing fewer groups affects model performance only when it also reduces the total number

of responses. However, unlike violating model assumptions such as local independence

and homoskedasticity, shrinking the number and size of groups does not result in lower

coverage, so credible intervals can still be trusted to quantify uncertainty.

In summary, the simulations confirm that the MODGIRT model performs extremely

well when the data-generating process follows the model’s assumptions, and that when

the assumptions of homoskedasticity and local independence are violated, the model

remains largely robust. The main effect is on the frequentist properties of the Bayesian

credible intervals, which are conservative (i.e., overly wide) under the assumed model

but become anticonservative when the within-group variances differ greatly or subjects

each answer more than 40% of items.

4 Applications

4.1 Preferences for Redistribution in Great Britain

In our first example application, we fit the MODGIRT model in a context where

individual-level scaling is feasible, thus permitting us to validate the results against

an individual-level analysis. Specifically, we reanalyze a study by Cavaillé and Trump

(2015), who use ordinal factor analysis to investigate the structure of attitudes towards

economic redistribution in the Great Britain.13 Examining 32 items from the 2004

13Since most of the items Cavaillé and Trump analyze are ordinal, they apply factor analysis to the
items’ polychoric correlation matrix.

16



wave of the British Social Attitudes (BSA) Survey, Cavaillé and Trump (CT) conclude

that attitudes in this domain are structured by two dimensions, one concerning

“redistribution from” the rich and the other “redistribution to” the poor.

To replicate CT’s analysis of the 2004 BSA, we fit a MODGIRT model with 30 groups, de-

fined by the cross-classification of income quintile, education (non-university/university),

and country (England/Scotland/Wales). Like the original authors, we characterize the

latent space as two-dimensional.14 We use the RSP algorithm to identify the raw param-

eter draws. We order the dimensions by the sum of squared discriminations and orient

them so that larger values of θ̄ indicate greater opposition to redistribution.

Figure 2: Comparison of MODGIRT discriminations with the factor loadings of Cavaillé
and Trump (2015).

14Cavaillé and Trump (2015) report results for a third dimension but argue that it is unnecessary. We,
too, find that a two-dimensional model is appropriate for these data; for evidence, see SI.
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Figure 2 plots the MODGIRT discrimination against the varimax-rotated factor loadings

reported in Cavaillé and Trump (2015, 152–53, Table 1). Estimates on the first dimension

(redistribution from) are on the left, and the second dimension (redistribution to) is on

the right. Both sets of estimates have correlations above 0.9. Despite being estimated

at the level of (rather coarse) groups rather than individuals, the MODGIRT model

projects items onto a latent space very similar to individual-level factor analysis.

CT also conduct a longitudinal analysis of the years 1986–2011, focusing on differences

across income quintiles (Cavaillé and Trump 2015, 151–55). The irregularity of items’

availability makes it difficult to apply factor analysis to the whole time series, so the

authors instead create additive indices of the item subsets available in all years (four

items for redistribution from, six items for redistribution to). Since the MODGIRT

model has no trouble with differing item sets across periods, we include all available

items in a single pooled model.15 Unlike additive scales, MODGIRT does not categorize

items to one dimension or the other, but rather allows items to contribute, in varying

degrees, to inferences about both dimensions.

15Excluding 1988 and 1992, when the British Social Attitudes Survey was not fielded, the number of
items available per year ranges from 4 (in 1997) to 32 (in 2004), with a median of 15.
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Figure 3: Estimated mean ideal points and 50% credible intervals for the first, third, and
fifth income quintiles, by dimension. Solid points indicate estimates in years
without surveys, which are interpolated by the dynamic model.

We fit the MODGIRT model to data from all BSA surveys fielded between 1986 and 2011,

using the same group definitions and post-estimation rotations as above. To replicate

CT’s analysis of income quintiles, we first average (within draws) the θ̄gtd estimates

of the groups composing each quintile, poststratifying them by the groups’ estimated

population proportions. These weighted averages are estimates of the mean ideal point

in each income quintile at each point in time.

Our analysis, summarized in Figure 3, largely reproduces CT’s main conclusions. Like

CT, we find that redistribution from preferences have become more conservative, espe-

cially since the mid-1990s, and that at each point in time conservatism on this dimension

increases monotonically with income. As for the redistribution to dimension, we corrob-
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orate CT’s finding that the British public also has become more conservative since the

early 1990s. Where we differ somewhat is with their conclusion that “[a]ttitudes regard-

ing redistribution to the poor…are not consistently predicted by income” (Cavaillé and

Trump 2015, 154). Although differences by income are much smaller on this dimension,

we are able to conclude with high confidence that in nearly every year after 1994, the

middle income quintile (Q3) exhibited greater conservatism on this dimension than both

the highest and lowest quintiles.16

In sum, our re-analysis of the 2004 BSA suggests that a MODGIRTmodel fit to aggregate

data can uncover the same latent space as a similar scaling model fit at the individual

level. Our longitudinal analysis further shows that the ease with which MODGIRT

accommodates missing items allows it to make use of more data than methods requiring

complete data, yielding more precise inferences. It is worth noting that CT’s dataset

includes an unusally large number of items per respondent on a given topic, which is

what makes it possible to perform multidimensional scaling at the level of individuals

(though only at a single point in time). The following section considers a more typical

application, in which individual-level scaling is infeasible.

4.2 Policy Ideology in Europe

In this section, we use the MODGIRT model to reanalyze a recent application of a group-

level IRT model to cross-national data: Caughey, O’Grady, and Warshaw’s (COW’s)

16Both sets of posterior probabilities are above 96% in every year after 1994 except in 1997, when there
is an 81% chance that the difference between Q3 and Q1 was positive.
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2019 study of mass policy ideology in Europe. COW fit a one-dimensional model in

each of four issue domains: “absolute economic,” “relative economic,” “social,” and “im-

migration.”17 The resulting domain-specific measures of mass conservatism exhibit “ex-

hibit contrasting cross-sectional cleavages and distinct temporal dynamics” (Caughey,

O’Grady, and Warshaw 2019, 674). In particular, while immigration and social con-

servatism are strongly correlated across countries, both are uncorrelated with absolute

economic conservatism and negatively correlated with relative economic conservatism.

We reanalyze a subset of the COW data, focusing the years 1999–2016.18 Like COW,

we define groups as the interaction of country, sex, and three-category age and allow

group ideal points to differ across biennia (1999–2000, 2001–2002, etc.). Being culled

from many distinct surveys, the COW dataset is very rich, including 27 countries, 100

items, and 1,817,270 individual responses.19 Nevertheless, it is also relatively sparse. Of

the 158,922 possible biennium-group-item combinations, 80% are missing any responses.

Of course, the individual-level data are sparser still. This dataset is thus typical of the

sort of cross-national application for which a group-level IRT model is well suited.

COW’s model is strongly confirmatory in its restriction that each item load on no more

than one factor. By contrast, our reanalysis is exploratory in orientation. Unlike COW,

we pool together items from all four issue domains, modeling them jointly as a function

of four latent factors. We identify the parameter draws using the RSP algorithm. Since

17Absolute economic items “ask about policy values or outcomes directly” whereas relative items “ask
about the direction of change relative to current policy” (Caughey, O’Grady, and Warshaw 2019,
676).

18The survey data are substantially sparser before 1999, especially on immigration.
19See Supplemental Information for descriptive statistics for the COW data used in this analysis.
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the COW dataset assigns conservative responses higher values, we arrange the factors

so that the average loading on each dimension is positive, thus orienting them from left

to right.

Factor 1 (SS = 5) Factor 2 (SS = 2.7) Factor 3 (SS = 1.3) Factor 4 (SS = 1.1)

−0.2 0.0 0.2 0.4 0.6 −0.2 0.0 0.2 0.4 0.6 −0.2 0.0 0.2 0.4 0.6 −0.2 0.0 0.2 0.4 0.6

Social
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Economic
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Discrimination Estimate
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Distribution of Discrimination Estimates by Domain and Factor

Figure 4: Box plots of the distribution of varimax-rotated discrimination estimates by
domain and factor.

The RSP algorithm’s varimax rotation yields one dominant factor, one secondary one,

and two minor ones. The sum of squared discriminations, which is proportional to the

variance explained by a given factor, is around 5 on the first dimension, 2.7 on the second,

and just above 1 on the remaining two. The factors have approximately equal within-

group standard deviations, all around one-tenth the between-group standard deviation

(σθ,d ≈ 0.1).

Figure 4 plots the distribution of discrimination estimates by factor and issue domain.20

As the leftmost panel indicates, Factor 1 is predominantly defined by immigration and

social issues. Given that larger values indicate more rightwing responses, this factor can

20For the discrimination estimates of specific items, see SI.
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thus be interpreted as representing conservatism in these domains. The discriminations

of economic items tend to be smaller in absolute magnitude and to have the opposite sign,

especially in the relative economic domain. This is consistent with COW’s observation

that social/immigration conservatism is negatively correlated with economic, especially

relative economic, conservatism.

Factor 2 is dominated by economic items, especially absolute ones. This factor may

therefore be interpreted as capturing variation in economic conservatism orthogonal to

Factor 1.21 Social items tend to load negatively on this dimension, again indicating

their inverse relationship with economic preferences. Factor 3, being dominated by

immigration items, represents distinctive preferences on this domain orthogonal to the

other factors. Factor 4 represents something similar on social issues, particularly those

related to gay rights and gender relations.

21By design, the factors are orthogonal in the first period. As they evolve in subsequent periods, they
remain roughly orthogonal, though factors 2 and 3 develop a modest negative correlation.
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Figure 5: Predictors of varimax-rotated group ideal points. Each dot represents the
average difference in θ̄gt between groups with the indicated attribute and those
in the baseline category (hollow square).
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Figure 5, which plots the predictors of group ideal points, provides further insight into

the meaning of each factor. First, as the top row of panels indicators, three of the four

factors have trended lower over time. The exception is Factor 3 (immigration-specific

conservatism), which underwent a durable increase in the early 2000s. The second row

shows that older Europeans are to the right of younger ones on Factor 1 (immigration

and social issues) and to a lesser extent Factor 4 (social), but are slightly to their

left on Factor 2 (economics). Gender differences (third row) are absent on Factor 1

(social/immigration) but evident on Factor 2 (economics) as well as on sexuality-related

Factor 4, with men being more conservative than women.

The bottom row Figure 5 displays country differences relative to Germany (the country

whose estimates are the most precise). On Factor 1, Sweden and other Nordic countries

anchor the left wing, whereas the right wing is dominated by countries in Southern and

Eastern Europe, such as Cyprus. This pattern is reversed on Factor 2, with countries

such as Greece and Spain on the left and Denmark and the Netherlands on the right.

On Factor 3, Switzerland is the most leftwing and Hungary the most rightwing, reflect-

ing these countries’ distinctive positions on immigration given their general social and

immigration conservatism captured in Factor 1. Finally, the Factor 4 scores indicate

the relatively progressive sexual attitudes of the French and the relative conservatism of

Lithuanians.
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Figure 6

Following COW, we can trace out the dynamics of national publics as a whole by post-

stratifying the group estimates to match the composition of national populations at each

point in time. Figure 6 plots the resulting estimates for one illustrative county on each

dimension. In the top-left panel (Factor 1), Germany illustrates the general Europe-wide

trend to the left on social and immigration issues. The top-right panel (Factor 2) dis-

plays the more idiosyncratic dynamics of the Czech public, whose economic conservatism

declined in the wake of the 2008 financial crisis before increasing sharply after 2012. The

bottom-left (Factor 3) shows Italy’s steady trend to the right on the immigration-specific

dimension, while the bottom-right (Factor 4) plots the decline in Spaniards’ sexual tra-

ditionalism since the turn of the century.

Most of the specific patterns we uncover, including the cleavages across time, age, gender,

and geographic region, are consistent with those reported by COW. Nevertheless, the

MODGIRT model offers a meaningfully different perspective on European public opinion
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than COW’s domain-specific measures. First, although items in different domains load

differentially on the four factors we uncover (see Figure 4), few items load solely on a

single factor. In fact, of the 100 items we analyze, 87 have discrimination parameters

distinguishable from zero on at least two factors.

More particularly, we find little evidence to support COW’s distinction between absolute

and relative economic items. While economic items do vary substantially in the mag-

nitude and even the sign of their discrimination on a given factor, almost none of this

variation is explained by classification as absolute or relative.22 The fact that Factors

3 and 4 respectively pick up variation specific to immigration and social issues provides

greater support for a distinction between these domains. Nevertheless, variation in both

domains is still dominated by Factor 1, on which immigration and social items load

equally strongly.

In sum, our exploratory approach does not recover the sharp distinctions across issue

domains assumed by COW’s confirmatory approach. Rather, it points to a dominant

factor related primarily to immigration and social issues, a secondary factor related to

economic issues, and two minor factors related to immigration and sexuality.

Whether an exploratory or a confirmatory approach is superior may depend on the

research purpose. An important advantage of COW’s unidimensional domain-specific

scales is ease of interpretation. Since unidimensional scales capture variation common

to items in a given domain, they can be more straightforwardly interpreted as indicating

22If economic discrimination estimates on a given dimension are regressed on an indicator for absolute
or relative, the largest R2 is 0.07 (for Factor 4).
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leftwing versus rightwing attitudes in that domain. By contrast, unless the factors have

a truly simple structure, MODGIRT factor scores should not be interpreted in isolation

but rather in conjunction with scores on other dimensions.

It is possible to use MODGIRT in a confirmatory mode similar to COW’s. One way to

do so is by constraining items to load only on a subset of factors (cf. restriction 4 in

Section 2.2). For example, COW’s confirmatory analysis could be reproduced by fitting

a four-dimensional MODGIRT model and then applying an oblique rotation to a target

matrix with zeroes to indicate the item-dimension loadings ruled out by assumption.

An alternative approach is to use the MODGIRT model to predict the probability of

a rightwing response on each item. These probabilities could then be averaged across

items in a given domain to produce a domain-specific analog to the “conservative vote

probabilities” suggested by Fowler and Hall (2017).

5 Extensions

This section describes several extensions to the basic MODGIRT model derived in Sec-

tion 2.
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5.1 Dirichlet-multinomial response distribution

The binomial version of the MODGIRT model defines group g’s probability at time t of

responding positively to item q as

pgqt = Φ

 β′
qθ̄gt − αq√

β′
qΣθβq + 1

 .

An alternative approach, suggested by McGann (2014), is to instead treat pgqt as the

mean of a Beta prior for the actual response probability πgqt = Pr(ygqt = 1) :

πgqt ∼ Beta (ϕpgqt, ϕ(1 − pgqt)) ,

where the dispersion parameter ϕ governs the precision of the prior. For a multinomial

model, the analog to the Beta is the Dirichlet distribution,

πgqt ∼ Dirichlet(Apgqt),

where A plays the same role as ϕ.

The advantage of the Dirichlet-multinomial formulation of the model is that it allows

for overdispersion. Specifically, it allows each πgqt to deviate from its expected value

to a degree inversely proportional to A, a parameter to be estimated. Claassen (2019)

presents evidence that this sort of model provides better uncertainty estimates than a

model without such a prior.
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5.2 Differential item functioning

A related concern is differential item functioning (Brady 1985). One dimension along

which items might differ in their relationship to a latent trait is across time. For example,

in the United States attitudes towards homosexuality and abortion are both strong

indicators of social conservatism, but since the 1970s the former have liberalized much

more than the latter. In other words, the “difficulty” of expressing conservative views

on homosexuality has increased relative to abortion. These sorts of item-specific time

trends can be accommodated by allowing αqt to evolve across periods like θ̄gt does (e.g.,

Caughey and Warshaw 2016).

Items can also function differently across countries (Stegmueller 2011). For example, if

residents of France interpret “politics” as referring specifically to partisan politics while

Finns interpret it more expansively, then expressions of “interest in politics” will be

biased downward in the former relative to the latter (Tarrow 1971). Claassen (2019)

proposes to address this possibility by defining each item difficulty as the sum of a

population-level mean and a random effect that differs across countries (see also Solt

2020). In a MODGIRT model estimated on subnational groups, this approach may be

generalized by modeling variation in item difficulties across other factors, such as race

or gender, in addition to or instead of geographical units.
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5.3 Hierarchical model for group means

A final extension is to enrich the dynamic model for θ̄gt with additional covariates xg,

yielding a model of the form

θ̄gt ∼ N (µ + ρθ̄g,t−1 + xgγt).

As has been shown in the context of multilevel regression and poststratification (Lax

and Phillips 2009), hierarchical models of this sort are of greatest use in contexts where

the data are relatively sparse, resulting in the sample including few or no respondents

from some groups. Models along these lines are used in Caughey and Warshaw (2015)

and Caughey, O’Grady, and Warshaw (2019). Caughey and Warshaw (2015) additionally

model the coefficients γt corresponding to geographic units with attributes of those units

(e.g., partisan vote share).

6 Conclusion

In this paper, we derived a dynamic multidimensional model of aggregate public opin-

ion (MODGIRT) from a microlevel IRT model and outlined a workflow for estimating

and identifying model output. Our identification procedures can be applied to multi-

dimensional latent-variable models generally, thus offering an additional contribution

beyond this specific model. Simulation results confirmed that MODGIRT accurately

represents the structure of mass preferences, even when its assumptions do not strictly
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hold. Across two applications, we demonstrated that MODGIRT reproduces the results

of individual-level scaling and highlighted the advantages of an exploratory multidimen-

sional approach over a confirmatory unidimensional one. Finally, we described how

the basic MODGIRT model can be extended to accommodate overdispersion, differen-

tial item functioning, and cross-sectional predictors for the latent trait. Software to

implement preprocessing, model-fitting, and postestimation procedures required to use

MODGIRT in practice is publicly available online.

The MODGIRT model has potentially wide applicability. It can be fit to data from

a single country, as in our British example, or to a large cross-national dataset, as in

our European example. Groups may be defined as geographic units, such as states or

countries, or at the level of demographic categories within those units. By applying

orthogonal or oblique rotations to the posterior draws, the parameter estimates can be

transformed into the form best suited for the research question of interest.

Nevertheless, MODGIRT is not suitable for all problems. Bayesian simulation is com-

putationally expensive, often taking hours if not days to complete. Thus when time is

scarce, a less demanding method, such as Stimson’s dyad ratio algorithm, may be prefer-

able. For any model, generating comparable estimates across time periods (or groups)

requires a sufficiently overlapping set of bridging items (e.g., item 1 bridges periods 1 and

2, item 2 bridges periods 2 and 3, etc.). Satisfying this condition may require coarsening

the time dimension, as Caughey, O’Grady, and Warshaw (2019) do by pooling years into

biennia.
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A group-level approach is also poorly suited for relating latent traits to outcomes mea-

sured at the level of individuals rather than groups. While it may be possible to aggregate

outcomes to the group level, making inferences about individual-level relationships re-

quires ecological assumptions that may not be plausible. A group-level IRT model may

not be needed at all if each subject answers enough items to estimate an individual-level

model.23 Even in this case, however, embedding the individual-level model in a hier-

archical structure similar to that assumed by MODGIRT will likely improve inferences

about subjects’ ideal points and their structural relationships to other parameters (Zhou

2019).

7 Data availability

An R package for implementing the MODGIRT model, including the pre-processing and

postprocessing steps needed to prepare the data and analyze the posterior samples, is

available at https://github.com/XXX.

Replication data for Cavaillé and Trump (2015) are available at https://doi.org/10.7910/DVN/L4MGG5.

Replication data for Caughey, O’Grady, and Warshaw (2019) are available at

https://doi.org/10.7910/DVN/H9XGEB.

23Among other things, the number of items required will depend on the number of latent factors.
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